Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Pointer invalidation has been a popular approach adopted in many recent studies to mitigate use-after-free errors. The approach can be divided largely into two different schemes: explicit invalidation and implicit invalidation. The former aims to eradicate the root cause of use-after-free errors by invalidating every dangling pointer one by one explicitly. In contrast, the latter aims to prevent dangling pointers by freeing an object only if there is no pointer referring to it. A downside of the explicit scheme is that it is expensive, as it demands high-cost algorithms or a large amount of space to maintain every up-to-date list of pointer locations linking to each object at all times. Implicit invalidation is more efficient in that even without any explicit effort, it can eliminate dangling pointers by leaving objects undeleted until all the links between the objects and their referring pointers vanish by themselves during program execution. However, such an argument only holds if the scheme knows exactly when each link is created and deleted. Reference counting is a traditional method to determine the existence of reference links between objects and pointers. Unfortunately, impeccable reference counting for legacy C/C++ code is very difficult and expensive to achieve in practice, mainly because of the type unsafe operations in the code. In this paper, we present a solution, called CRCount, to the use-after-free problem in legacy C/C++. For effective and efficient problem solving, CRCount is armed with the pointer footprinting technique that enables us to compute, with high accuracy, the reference count of every object referred to by the pointers in the legacy code. Our experiments demonstrate that CRCount mitigates the use-after-free errors with a lower performance-wise and space-wise overhead than the existing pointer invalidation solutions.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 34 ) ) ) [post__not_in] => Array ( [0] => 4589 ) )

Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints

Shiqi Shen (National University of Singapore), Shweta Shinde (National University of Singapore), Soundarya Ramesh (National University of Singapore), Abhik Roychoudhury (National University of Singapore), Prateek Saxena (National University of Singapore)

Read More

SABRE: Protecting Bitcoin against Routing Attacks

Maria Apostolaki (ETH Zurich), Gian Marti (ETH Zurich), Jan Müller (ETH Zurich), Laurent Vanbever (ETH Zurich)

Read More

JavaScript Template Attacks: Automatically Inferring Host Information for Targeted...

Michael Schwarz (Graz University of Technology), Florian Lackner (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Establishing Software Root of Trust Unconditionally

Virgil D. Gligor (Carnegie Mellon University), Maverick S. L. Woo (Carnegie Mellon University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)