Victor Perrier (Data61, CSIRO and ISAE-SUPAERO), Hassan Jameel Asghar (Macquarie University and Data61, CSIRO), Dali Kaafar (Macquarie University and Data61, CSIRO)

We present a differentially private mechanism to display statistics (e.g., the moving average) of a stream of real valued observations where the bound on each observation is either too conservative or unknown in advance. This is particularly relevant to scenarios of real-time data monitoring and reporting, e.g., energy data through smart meters. Our focus is on real-world data streams whose distribution is light-tailed, meaning that the tail approaches zero at least as fast as the exponential distribution. For such data streams, individual observations are expected to be concentrated below an unknown threshold. Estimating this threshold from the data can potentially violate privacy as it would reveal particular events tied to individuals. On the other hand an overly conservative threshold may impact accuracy by adding more noise than necessary. We construct a utility optimizing differentially private mechanism to release this threshold based on the input stream. Our main advantage over the state-of-the-art algorithms is that the resulting noise added to each observation of the stream is scaled to the threshold instead of a possibly much larger bound; resulting in considerable gain in utility when the difference is significant. Using two real-world datasets, we demonstrate that our mechanism, on average, improves the utility by a factor of 3.5 on the first dataset, and 9 on the other. While our main focus is on continual release of statistics, our mechanism for releasing the threshold can be used in various other applications where a (privacy-preserving) measure of the scale of the input distribution is required.

View More Papers

Automating Patching of Vulnerable Open-Source Software Versions in Application...

Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

TextBugger: Generating Adversarial Text Against Real-world Applications

Jinfeng Li (Zhejiang University), Shouling Ji (Zhejiang University), Tianyu Du (Zhejiang University), Bo Li (University of California, Berkeley), Ting Wang (Lehigh University)

Read More

Balancing Image Privacy and Usability with Thumbnail-Preserving Encryption

Kimia Tajik (Oregon State University), Akshith Gunasekaran (Oregon State University), Rhea Dutta (Cornell University), Brandon Ellis (Oregon State University), Rakesh B. Bobba (Oregon State University), Mike Rosulek (Oregon State University), Charles V. Wright (Portland State University), Wu-Chi Feng (Portland State University)

Read More

ExSpectre: Hiding Malware in Speculative Execution

Jack Wampler (University of Colorado Boulder), Ian Martiny (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More