Sergey Frolov (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

TLS, the Transport Layer Security protocol, has quickly become the most popular protocol on the Internet, already used to load over 70% of web pages in Mozilla Firefox. Due to its ubiquity, TLS is also a popular protocol for censorship circumvention tools, including Tor and Signal, among others.

However, the wide range of features supported in TLS makes it possible to distinguish implementations from one another by what set of cipher suites, elliptic curves, signature algorithms, and other extensions they support. Already, censors have used deep packet inspection (DPI) to identify and block popular circumvention tools based on the fingerprint of their TLS implementation.

In response, many circumvention tools have attempted to mimic popular TLS implementations such as browsers, but this technique has several challenges. First, it is burdensome to keep up with the rapidly-changing browser TLS implementations, and know what fingerprints would be good candidates to mimic. Second, TLS implementations can be difficult to mimic correctly, as they offer many features that may not be supported by the relatively lightweight libraries used in typical circumvention tools. Finally, dependency changes and updates to the underlying libraries can silently impact what an application’s TLS fingerprint looks like, making it difficult for tools to control.

In this paper, we collect and analyze real-world TLS traffic from over 11.8 billion TLS connections over 9 months to identify a wide range of TLS client implementations actually used on the Internet. We use our data to analyze TLS implementations of several popular censorship circumvention tools, including Lantern, Psiphon, Signal, Outline, Tapdance, and Tor (Snowflake and meek). We find that the many of these tools use TLS configurations that are easily distinguishable from the real-world traffic they attempt to mimic, even when these tools have put effort into parroting popular TLS implementations.

To address this problem, we have developed a library, uTLS, that enables tool maintainers to automatically mimic other popular TLS implementations. Using our real-world traffic dataset, we observe many popular TLS implementations we are able to correctly mimic with uTLS, and we describe ways our tool can more flexibly adopt to the dynamic TLS ecosystem with minimal manual effort.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 34 ) ) ) [post__not_in] => Array ( [0] => 4582 ) )

How to End Password Reuse on the Web

Ke Coby Wang (UNC Chapel Hill), Michael K. Reiter (UNC Chapel Hill)

Read More

Private Continual Release of Real-Valued Data Streams

Victor Perrier (Data61, CSIRO and ISAE-SUPAERO), Hassan Jameel Asghar (Macquarie University and Data61, CSIRO), Dali Kaafar (Macquarie University and Data61, CSIRO)

Read More

Mind Your Own Business: A Longitudinal Study of Threats...

Platon Kotzias (IMDEA Software Institute, Universidad Politécnica de Madrid), Leyla Bilge (Symantec Research Labs), Pierre-Antoine Vervier (Symantec Research Labs), Juan Caballero (IMDEA Software Institute)

Read More

Constructing an Adversary Solver for Equihash

Xiaofei Bai (School of Computer Science, Fudan University), Jian Gao (School of Computer Science, Fudan University), Chenglong Hu (School of Computer Science, Fudan University), Liang Zhang (School of Computer Science, Fudan University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)