Milad Nasr (University of Massachusetts Amherst), Sadegh Farhang (Pennsylvania State University), Amir Houmansadr (University of Massachusetts Amherst), Jens Grossklags (Technical University of Munich)

A core technique used by popular proxy-based circumvention systems like Tor is to privately and selectively distribute the IP addresses of circumvention proxies among censored clients to keep them unknown to the censors. In Tor, for instance, such privately shared proxies are known as bridges. A key challenge to this mechanism is the insider attack problem: censoring agents can impersonate benign censored clients in order to learn (and then block) the privately shared circumvention proxies. To minimize the risks of the insider attack threat, in-the-wild circumvention systems like Tor use various proxy assignment mechanisms in order to minimize the risk of proxy enumeration by the censors, while providing access to a large fraction of censored clients.

Unfortunately, existing proxy assignment mechanisms (like the one used by Tor) are based on ad hoc heuristics that offer no theoretical guarantees and are easily evaded in practice. In this paper, we take a systematic approach to the problem of proxy distribution in circumvention systems by establishing a game-theoretic framework. We model the proxy assignment problem as a game between circumvention system operators and the censors, and use game theory to derive the optimal strategies of each of the parties. Using our framework, we derive the best (optimal) proxy assignment mechanism of a circumvention system like Tor in the presence of the strongest censorship adversary who takes her best censorship actions.

We perform extensive simulations to evaluate our optimal proxy assignment algorithm under various adversarial and network settings. We show that the algorithm has superior performance compared to the state of the art, i.e., provides stronger resistance to censorship even against the strongest censorship adversary. Our study establishes a generic framework for optimal proxy assignment that can be applied to various types of circumvention systems and under various threat models. We conclude with lessons and recommendations for the design of proxy-based circumvention systems.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 34 ) ) ) [post__not_in] => Array ( [0] => 4580 ) )

Automating Patching of Vulnerable Open-Source Software Versions in Application...

Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous...

Tigist Abera (Technische Universität Darmstadt), Raad Bahmani (Technische Universität Darmstadt), Ferdinand Brasser (Technische Universität Darmstadt), Ahmad Ibrahim (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Matthias Schunter (Intel Labs)

Read More

The use of TLS in Censorship Circumvention

Sergey Frolov (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

Component-Based Formal Analysis of 5G-AKA: Channel Assumptions and Session...

Cas Cremers (CISPA Helmholtz Center for Information Security), Martin Dehnel-Wild (University of Oxford)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)