Orcun Cetin (Delft University of Technology), Carlos Gañán (Delft University of Technology), Lisette Altena (Delft University of Technology), Takahiro Kasama (National Institute of Information and Communications Technology), Daisuke Inoue (National Institute of Information and Communications Technology), Kazuki Tamiya (Yokohama National University), Ying Tie (Yokohama National University), Katsunari Yoshioka (Yokohama National University), Michel van Eeten (Delft University of Technology)

With the rise of IoT botnets, the remediation of infected devices has become a critical task. As over 87% of these devices reside in broadband networks, this task will fall primarily to consumers and the Internet Service Providers. We present the first empirical study of IoT malware cleanup in the wild -- more specifically, of removing Mirai infections in the network of a medium-sized ISP. To measure remediation rates, we combine data from an observational study and a randomized controlled trial involving 220 consumers who suffered a Mirai infection together with data from honeypots and darknets. We find that quarantining and notifying infected customers via a walled garden, a best practice from ISP botnet mitigation for conventional malware, remediates 92% of the infections within 14 days. Email-only notifications have no observable impact compared to a control group where no notifications were sent. We also measure surprisingly high natural remediation rates of 58-74% for this control group and for two reference networks where users were also not notified. Even more surprising, reinfection rates are low. Only 5% of the customers who remediated suffered another infection in the five months after our first study. This stands in contrast to our lab tests, which observed reinfection of real IoT devices within minutes -- a discrepancy for which we explore various different possible explanations, but find no satisfactory answer. We gather data on customer experiences and actions via 76 phone interviews and the communications logs of the ISP. Remediation succeeds even though many users are operating from the wrong mental model -- e.g., they run anti-virus software on their PC to solve the infection of an IoT device. While quarantining infected devices is clearly highly effective, future work will have to resolve several remaining mysteries. Furthermore, it will be hard to scale up the walled garden solution because of the weak incentives of the ISPs.

View More Papers

NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage

Wajih Ul Hassan (NEC Laboratories America, Inc.; University of Illinois at Urbana–Champaign), Shengjian Guo (Virginia Tech), Ding Li (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Kangkook Jee (NEC Laboratories America, Inc.), Zhichun Li (NEC Laboratories America, Inc.), Adam Bates (University of Illinois at Urbana–Champaign)

Read More

Countering Malicious Processes with Process-DNS Association

Suphannee Sivakorn (Columbia University), Kangkook Jee (NEC Labs America), Yixin Sun (Princeton University), Lauri Korts-Pärn (Cyber Defense Institute), Zhichun Li (NEC Labs America), Cristian Lumezanu (NEC Labs America), Zhenyu Wu (NEC Labs America), Lu-An Tang (NEC Labs America), Ding Li (NEC Labs America)

Read More

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More

Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis...

Sina Faezi (University of California, Irvine), Sujit Rokka Chhetri (University of California, Irvine), Arnav Vaibhav Malawade (University of California, Irvine), John Charles Chaput (University of California, Irvine), William Grover (University of California, Riverside), Philip Brisk (University of California, Riverside), Mohammad Abdullah Al Faruque (University of California, Irvine)

Read More