Anrin Chakraborti (Stony Brook University), Radu Sion (Stony Brook University)

ConcurORAM is a parallel, multi-client oblivious RAM (ORAM) that eliminates waiting for concurrent stateless clients and allows over-all throughput to scale gracefully, without requiring trusted third party components (proxies) or direct inter-client coordination. A key insight behind ConcurORAM is the fact that, during multi-client data access, only a subset of the concurrently-accessed server-hosted data structures require access privacy guarantees. Everything else can be safely implemented as oblivious data structures that are later synced securely and efficiently during an ORAM “eviction”.

Further, since a major contributor to latency is the eviction– in which client-resident data is reshuffled and reinserted back encrypted into the main server database – ConcurORAM also enables multiple concurrent clients to evict asynchronously, in parallel (without compromising consistency), and in the back-ground without having to block ongoing queries. As a result, throughput scales well with increasing number of concurrent clients and is not significantly impacted by evictions. For example, about 65 queries per second can be executed in parallel by 30 concurrent clients, a 2x speedup over the state-of-the-art. The query access time for individual clients increases by only 2x when compared to a single-client deployment.

View More Papers

YODA: Enabling computationally intensive contracts on blockchains with Byzantine...

Sourav Das (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Vinay Joseph Ribeiro (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Abhijeet Anand (Department of Computer Science and Engineering, Indian Institute of Technology Delhi)

Read More

Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manipulation

Victor Le Pochat (imec-DistriNet, KU Leuven), Tom Van Goethem (imec-DistriNet, KU Leuven), Samaneh Tajalizadehkhoob (Delft University of Technology), Maciej Korczyński (Grenoble Alps University), Wouter Joosen (imec-DistriNet, KU Leuven)

Read More

Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks

Michael Rodler (University of Duisburg-Essen), Wenting Li (NEC Laboratories, Germany), Ghassan O. Karame (NEC Laboratories, Germany), Lucas Davi (University of Duisburg-Essen)

Read More

RFDIDS: Radio Frequency-based Distributed Intrusion Detection System for the...

Tohid Shekari (ECE, Georgia Tech), Christian Bayens (ECE, Georgia Tech), Morris Cohen (ECE, Georgia Tech), Lukas Graber (ECE, Georgia Tech), Raheem Beyah (ECE, Georgia Tech)

Read More