Anrin Chakraborti (Stony Brook University), Radu Sion (Stony Brook University)

ConcurORAM is a parallel, multi-client oblivious RAM (ORAM) that eliminates waiting for concurrent stateless clients and allows over-all throughput to scale gracefully, without requiring trusted third party components (proxies) or direct inter-client coordination. A key insight behind ConcurORAM is the fact that, during multi-client data access, only a subset of the concurrently-accessed server-hosted data structures require access privacy guarantees. Everything else can be safely implemented as oblivious data structures that are later synced securely and efficiently during an ORAM “eviction”.

Further, since a major contributor to latency is the eviction– in which client-resident data is reshuffled and reinserted back encrypted into the main server database – ConcurORAM also enables multiple concurrent clients to evict asynchronously, in parallel (without compromising consistency), and in the back-ground without having to block ongoing queries. As a result, throughput scales well with increasing number of concurrent clients and is not significantly impacted by evictions. For example, about 65 queries per second can be executed in parallel by 30 concurrent clients, a 2x speedup over the state-of-the-art. The query access time for individual clients increases by only 2x when compared to a single-client deployment.

View More Papers

OBFUSCURO: A Commodity Obfuscation Engine on Intel SGX

Adil Ahmad (Purdue), Byunggill Joe (KAIST), Yuan Xiao (Ohio State University), Yinqian Zhang (Ohio State University), Insik Shin (KAIST), Byoungyoung Lee (Purdue/SNU)

Read More

BadBluetooth: Breaking Android Security Mechanisms via Malicious Bluetooth Peripherals

Fenghao Xu (The Chinese University of Hong Kong), Wenrui Diao (Jinan University), Zhou Li (University of California, Irvine), Jiongyi Chen (The Chinese University of Hong Kong), Kehuan Zhang (The Chinese University of Hong Kong)

Read More

Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints

Shiqi Shen (National University of Singapore), Shweta Shinde (National University of Singapore), Soundarya Ramesh (National University of Singapore), Abhik Roychoudhury (National University of Singapore), Prateek Saxena (National University of Singapore)

Read More

NIC: Detecting Adversarial Samples with Neural Network Invariant Checking

Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Read More