Jack Wampler (University of Colorado Boulder), Ian Martiny (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Recently, the Spectre and Meltdown attacks revealed serious vulnerabilities in modern CPU designs, allowing
an attacker to exfiltrate data from sensitive programs. These
vulnerabilities take advantage of speculative execution to coerce
a processor to perform computation that would otherwise not
occur, leaking the resulting information via side channels to an
attacker.

In this paper, we extend these ideas in a different direction,
and leverage speculative execution in order to hide malware from
both static and dynamic analysis. Using this technique, critical
portions of a malicious program’s computation can be shielded
from view, such that even a debugger following an instruction-
level trace of the program cannot tell how its results were
computed.

We introduce ExSpectre, which compiles arbitrary malicious
code into a seemingly-benign payload binary. When a separate
trigger program runs on the same machine, it mistrains the CPU’s
branch predictor, causing the payload program to speculatively
execute its malicious payload, which communicates speculative
results back to the rest of the payload program to change its
real-world behavior.

We study the extent and types of execution that can be
performed speculatively, and demonstrate several computations
that can be performed covertly. In particular, within speculative execution we are able to decrypt memory using AES-NI
instructions at over 11 kbps. Building on this, we decrypt and
interpret a custom virtual machine language to perform arbitrary
computation and system calls in the real world. We demonstrate
this with a proof-of-concept dial back shell, which takes only
a few milliseconds to execute after the trigger is issued. We
also show how our corresponding trigger program can be a pre-existing benign application already running on the system, and
demonstrate this concept with OpenSSL driven remotely by the
attacker as a trigger program.

ExSpectre demonstrates a new kind of malware that evades
existing reverse engineering and binary analysis techniques. Because its true functionality is contained in seemingly unreachable
dead code, and its control flow driven externally by potentially
any other program running at the same time, ExSpectre poses a
novel threat to state-of-the-art malware analysis techniques.

View More Papers

Analyzing Semantic Correctness with Symbolic Execution: A Case Study...

Sze Yiu Chau (Purdue University), Moosa Yahyazadeh (The University of Iowa), Omar Chowdhury (The University of Iowa), Aniket Kate (Purdue University), Ninghui Li (Purdue University)

Read More

MBeacon: Privacy-Preserving Beacons for DNA Methylation Data

Inken Hagestedt (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Haixu Tang (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

Mind Your Own Business: A Longitudinal Study of Threats...

Platon Kotzias (IMDEA Software Institute, Universidad Politécnica de Madrid), Leyla Bilge (Symantec Research Labs), Pierre-Antoine Vervier (Symantec Research Labs), Juan Caballero (IMDEA Software Institute)

Read More

Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based

David Derler (DFINITY), Kai Samelin (TÜV Rheinland i-sec GmbH), Daniel Slamanig (AIT Austrian Institute of Technology), Christoph Striecks (AIT Austrian Institute of Technology)

Read More