Ke Coby Wang (UNC Chapel Hill), Michael K. Reiter (UNC Chapel Hill)

We present a framework by which websites can coordinate to make it difficult for users to set similar passwords at these websites, in an effort to break the culture of password reuse on the web today.
Though the design of such a framework is fraught with risks to users’ security and privacy, we show that these risks can be effectively mitigated through careful scoping of the goals for such a framework and through principled design. At the core of our framework is a private set-membership-test protocol that enables one website to determine, upon a user setting a password for use at it, whether that user has already set a similar password at another participating website, but with neither side disclosing to the other the password(s) it employs in the protocol. Our framework then layers over this protocol a collection of techniques to mitigate the leakage necessitated by such a test. We verify via probabilistic model checking that these techniques are effective in maintaining account security, and since these mechanisms are consistent with common user experience today, our framework should be unobtrusive to users who do not reuse similar passwords across websites (e.g., due to having adopted a password manager). Through a working implementation of our framework and optimization of its parameters based on insights of how passwords tend to be reused, we show that our design can meet the scalability challenges facing such a service.

View More Papers

Establishing Software Root of Trust Unconditionally

Virgil D. Gligor (Carnegie Mellon University), Maverick S. L. Woo (Carnegie Mellon University)

Read More

Neural Machine Translation Inspired Binary Code Similarity Comparison beyond...

Fei Zuo (University of South Carolina), Xiaopeng Li (University of South Carolina), Patrick Young (Temple University), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina), Zhexin Zhang (University of South Carolina)

Read More

Robust Performance Metrics for Authentication Systems

Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Read More

Ginseng: Keeping Secrets in Registers When You Distrust the...

Min Hong Yun (Rice University), Lin Zhong (Rice University)

Read More