Xiaofei Bai (School of Computer Science, Fudan University), Jian Gao (School of Computer Science, Fudan University), Chenglong Hu (School of Computer Science, Fudan University), Liang Zhang (School of Computer Science, Fudan University)

Blockchain networks, especially cryptocurrencies, rely heavily on proof-of-work (PoW) systems, often as a basis to distribute rewards. These systems require solving specific puzzles, where Application Specific Integrated Circuits (ASICs) can be designed for performance or efficiency. Either way, ASICs surpass CPUs and GPUs by orders of magnitude, and may harm blockchain networks. Recently, Equihash is developed to resist ASIC solving with heavy memory usage. Although commercial ASIC solvers exist for its most popular parameter set, such solvers do not work under better ones, and are considered impossible under optimal parameters. In this paper, we inspect the ASIC resistance of Equihash by constructing a parameter-independent adversary solver design. We evaluate the product, and project at least 10x efficiency advantage for resourceful adversaries. We contribute to the security community in two ways: (1) by revealing the limitation of Equihash and raising awareness about its algorithmic factors, and (2) by demonstrating that security inspection is practical and useful on PoW systems, serving as a start point for future research and development.

View More Papers

We Value Your Privacy ... Now Take Some Cookies:...

Martin Degeling (Ruhr-Universität Bochum), Christine Utz (Ruhr-Universität Bochum), Christopher Lentzsch (Ruhr-Universität Bochum), Henry Hosseini (Ruhr-Universität Bochum), Florian Schaub (University of Michigan), Thorsten Holz (Ruhr-Universität Bochum)

Read More

Giving State to the Stateless: Augmenting Trustworthy Computation with...

Gabriel Kaptchuk (Johns Hopkins University), Matthew Green (Johns Hopkins University), Ian Miers (Cornell Tech)

Read More

Unveiling your keystrokes: A Cache-based Side-channel Attack on Graphics...

Daimeng Wang (University of California Riverside), Ajaya Neupane (University of California Riverside), Zhiyun Qian (University of California Riverside), Nael Abu-Ghazaleh (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Edward J. M. Colbert (Virginia Tech), Paul Yu (U.S. Army Research Lab (ARL))

Read More

Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game...

Milad Nasr (University of Massachusetts Amherst), Sadegh Farhang (Pennsylvania State University), Amir Houmansadr (University of Massachusetts Amherst), Jens Grossklags (Technical University of Munich)

Read More