Xiaofei Bai (School of Computer Science, Fudan University), Jian Gao (School of Computer Science, Fudan University), Chenglong Hu (School of Computer Science, Fudan University), Liang Zhang (School of Computer Science, Fudan University)

Blockchain networks, especially cryptocurrencies, rely heavily on proof-of-work (PoW) systems, often as a basis to distribute rewards. These systems require solving specific puzzles, where Application Specific Integrated Circuits (ASICs) can be designed for performance or efficiency. Either way, ASICs surpass CPUs and GPUs by orders of magnitude, and may harm blockchain networks. Recently, Equihash is developed to resist ASIC solving with heavy memory usage. Although commercial ASIC solvers exist for its most popular parameter set, such solvers do not work under better ones, and are considered impossible under optimal parameters. In this paper, we inspect the ASIC resistance of Equihash by constructing a parameter-independent adversary solver design. We evaluate the product, and project at least 10x efficiency advantage for resourceful adversaries. We contribute to the security community in two ways: (1) by revealing the limitation of Equihash and raising awareness about its algorithmic factors, and (2) by demonstrating that security inspection is practical and useful on PoW systems, serving as a start point for future research and development.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 34 ) ) ) [post__not_in] => Array ( [0] => 4549 ) )

Graph-based Security and Privacy Analytics via Collective Classification with...

Binghui Wang (Iowa State University), Jinyuan Jia (Iowa State University), Neil Zhenqiang Gong (Iowa State University)

Read More

Giving State to the Stateless: Augmenting Trustworthy Computation with...

Gabriel Kaptchuk (Johns Hopkins University), Matthew Green (Johns Hopkins University), Ian Miers (Cornell Tech)

Read More

ConcurORAM: High-Throughput Stateless Parallel Multi-Client ORAM

Anrin Chakraborti (Stony Brook University), Radu Sion (Stony Brook University)

Read More

NAUTILUS: Fishing for Deep Bugs with Grammars

Cornelius Aschermann (Ruhr-Universität Bochum), Tommaso Frassetto (Technische Universität Darmstadt), Thorsten Holz (Ruhr-Universität Bochum), Patrick Jauernig (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Daniel Teuchert (Ruhr-Universität Bochum)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)