Min Hong Yun (Rice University), Lin Zhong (Rice University)

Many mobile and embedded apps possess sensitive data, or secrets. Trusting the operating system (OS), they often keep their secrets in the memory. Recent incidents have shown that the memory is not necessarily secure because the OS can be compromised due to inevitable vulnerabilities resulting from its sheer size and complexity. Existing solutions protect sensitive data against an untrusted OS by running app logic in the Secure world, a Trusted Execution Environment (TEE) supported by the ARM TrustZone technology. Because app logic increases the attack surface of their TEE, these solutions do not work for third-party apps.

This work aims to support third-party apps without growing the attack surface, significant development effort, or performance overhead. Our solution, called Ginseng, protects sensitive data by allocating them to registers at compile time and encrypting them at runtime before they enter the memory, due to function calls, exceptions or lack of physical registers. Ginseng does not run any app logic in the TEE and only requires minor markups to support existing apps. We report a prototype implementation based on LLVM, ARM Trusted Firmware (ATF), and the HiKey board. We evaluate it with both microbenchmarks and real-world secret-holding apps.

Our evaluation shows Ginseng efficiently protects sensitive data with low engineering effort. For example, a Ginseng-enabled web server, Nginx, protects the TLS master key with no measurable overhead. We find Ginseng's overhead is proportional to how often sensitive data in registers have to be encrypted and decrypted, i.e., spilling and restoring sensitive data on a function call or under high register pressure. As a result, Ginseng is most suited to protecting small sensitive data, like a password or social security number.

View More Papers

Countering Malicious Processes with Process-DNS Association

Suphannee Sivakorn (Columbia University), Kangkook Jee (NEC Labs America), Yixin Sun (Princeton University), Lauri Korts-Pärn (Cyber Defense Institute), Zhichun Li (NEC Labs America), Cristian Lumezanu (NEC Labs America), Zhenyu Wu (NEC Labs America), Lu-An Tang (NEC Labs America), Ding Li (NEC Labs America)

Read More

JavaScript Template Attacks: Automatically Inferring Host Information for Targeted...

Michael Schwarz (Graz University of Technology), Florian Lackner (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to...

Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Read More

Cracking the Wall of Confinement: Understanding and Analyzing Malicious...

Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Read More