Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Broadly defined as the Internet of Things (IoT), the growth of commodity devices that integrate physical processes with digital connectivity has changed the way we live, play, and work. To date, the traditional approach to securing IoT has treated devices individually. However, in practice, it has been recently shown that the interactions among devices are often the real cause of safety and security violations. In this paper, we present IoTGuard, a dynamic, policy-based enforcement system for IoT, which protects users from unsafe and insecure device states by monitoring the behavior of IoT and trigger-action platform apps. IoTGuard operates in three phases: (a) implementation of a code instrumentor that adds extra logic to an app's source code to collect app's information at runtime, (b) storing the apps' information in a dynamic model that represents the runtime execution behavior of apps, and (c) identifying IoT safety and security policies, and enforcing relevant policies on the dynamic model of individual apps or sets of interacting apps. We demonstrate IoTGuard on 20 flawed apps and find that IoTGuard correctly enforces 12 of the 12 policy violations. In addition, we evaluate IoTGuard on 35 SmartThings IoT and 30 IFTTT trigger-action platform market apps executed in a simulated smart home. IoTGuard enforces 11 unique policies and blocks 16 states in six (17.1%) SmartThings and five (16.6%) IFTTT apps. IoTGuard imposes only 17.3% runtime overhead on an app and 19.8% for five interacting apps. Through this effort, we introduce a rigorously grounded system for enforcing correct operation of IoT devices through systematically identified IoT policies, demonstrating the effectiveness and value of monitoring IoT apps with tools such as IoTGuard.

View More Papers

Neural Machine Translation Inspired Binary Code Similarity Comparison beyond...

Fei Zuo (University of South Carolina), Xiaopeng Li (University of South Carolina), Patrick Young (Temple University), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina), Zhexin Zhang (University of South Carolina)

Read More

Graph-based Security and Privacy Analytics via Collective Classification with...

Binghui Wang (Iowa State University), Jinyuan Jia (Iowa State University), Neil Zhenqiang Gong (Iowa State University)

Read More

Private Continual Release of Real-Valued Data Streams

Victor Perrier (Data61, CSIRO and ISAE-SUPAERO), Hassan Jameel Asghar (Macquarie University and Data61, CSIRO), Dali Kaafar (Macquarie University and Data61, CSIRO)

Read More

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via...

A. Theodore Markettos (University of Cambridge), Colin Rothwell (University of Cambridge), Brett F. Gutstein (Rice University), Allison Pearce (University of Cambridge), Peter G. Neumann (SRI International), Simon W. Moore (University of Cambridge), Robert N. M. Watson (University of Cambridge)

Read More