Maria Apostolaki (ETH Zurich), Gian Marti (ETH Zurich), Jan Müller (ETH Zurich), Laurent Vanbever (ETH Zurich)

Nowadays Internet routing attacks remain practi- cally effective as existing countermeasures either fail to provide protection guarantees or are not easily deployable. Blockchain systems are particularly vulnerable to such attacks as they rely on Internet-wide communications to reach consensus. In particular, Bitcoin—the most widely-used cryptocurrency—can be split in half by any AS-level adversary using BGP hijacking.

In this paper, we present SABRE, a secure and scalable Bitcoin relay network which relays blocks worldwide through a set of connections that are resilient to routing attacks. SABRE runs alongside the existing peer-to-peer network and is easily deployable. As a critical system, SABRE design is highly resilient and can efficiently handle high bandwidth loads, including Denial of Service attacks.

We built SABRE around two key technical insights. First, we leverage fundamental properties of inter-domain routing (BGP) policies to host relay nodes: (i) in networks that are inherently protected against routing attacks; and (ii) on paths that are economically-preferred by the majority of Bitcoin clients. These properties are generic and can be used to protect other Blockchain-based systems. Second, we leverage the fact that relaying blocks is communication-heavy, not computation-heavy. This enables us to offload most of the relay operations to programmable network hardware (using the P4 programming language). Thanks to this hardware/software co-design, SABRE nodes operate seamlessly under high load while mitigating the effects of malicious clients.

We present a complete implementation of SABRE together with an extensive evaluation. Our results demonstrate that SABRE is effective at securing Bitcoin against routing attacks, even with deployments of as few as 6 nodes.

View More Papers

CodeAlchemist: Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript...

HyungSeok Han (KAIST), DongHyeon Oh (KAIST), Sang Kil Cha (KAIST)

Read More

How Bad Can It Git? Characterizing Secret Leakage in...

Michael Meli (North Carolina State University), Matthew R. McNiece (Cisco Systems and North Carolina State University), Bradley Reaves (North Carolina State University)

Read More

Establishing Software Root of Trust Unconditionally

Virgil D. Gligor (Carnegie Mellon University), Maverick S. L. Woo (Carnegie Mellon University)

Read More

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More