Xiaokuan Zhang (The Ohio State University), Jihun Hamm (The Ohio State University), Michael K. Reiter (University of North Carolina at Chapel Hill), Yinqian Zhang (The Ohio State University)

Machine learning empowers traffic-analysis attacks that breach users' privacy from their encrypted traffic. Recent advances in deep learning drastically escalate such threats.
One prominent example demonstrated recently is a traffic-analysis attack against video streaming by using convolutional neural networks. In this paper, we explore the adaption of techniques previously used in the domains of adversarial machine learning and differential privacy to mitigate the machine-learning-powered analysis of streaming traffic.

Our findings are twofold. First, constructing adversarial samples effectively confounds an adversary with a predetermined classifier but is less effective when the adversary can adapt to the defense by using alternative classifiers or training the classifier with adversarial samples. Second, differential-privacy guarantees are very effective against such statistical-inference-based traffic analysis, while remaining agnostic to the machine learning classifiers used by the adversary. We propose two mechanisms for enforcing differential privacy for encrypted streaming traffic, and evaluate their security and utility. Our empirical implementation and evaluation suggest that the proposed statistical privacy approaches are promising solutions in the underlying scenarios.

View More Papers

Component-Based Formal Analysis of 5G-AKA: Channel Assumptions and Session...

Cas Cremers (CISPA Helmholtz Center for Information Security), Martin Dehnel-Wild (University of Oxford)

Read More

ML-Leaks: Model and Data Independent Membership Inference Attacks and...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Mario Fritz (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

Establishing Software Root of Trust Unconditionally

Virgil D. Gligor (Carnegie Mellon University), Maverick S. L. Woo (Carnegie Mellon University)

Read More

How Bad Can It Git? Characterizing Secret Leakage in...

Michael Meli (North Carolina State University), Matthew R. McNiece (Cisco Systems and North Carolina State University), Bradley Reaves (North Carolina State University)

Read More