Jinfeng Li (Zhejiang University), Shouling Ji (Zhejiang University), Tianyu Du (Zhejiang University), Bo Li (University of California, Berkeley), Ting Wang (Lehigh University)

Deep Learning-based Text Understanding (DLTU) is the backbone technique behind various applications, including question answering, machine translation, and text classification. Despite its tremendous popularity, the security vulnerabilities of DLTU are still largely unknown, which is highly concerning given its increasing use in security-sensitive applications such as user sentiment analysis and toxic content detection. In this paper, we show that DLTU is inherently vulnerable to adversarial text attacks, in which maliciously crafted text triggers target DLTU systems and services to misbehave. Specifically, we present TextBugger, a general attack framework for generating adversarial text. In contrast of prior work, TextBugger differs in significant ways: (i) effective -- it outperforms state-of-the-art attacks in terms of attack success rate; (ii) evasive -- it preserves the utility of benign text, with 94.9% of the adversarial text correctly recognized by human readers; and (iii) efficient -- it generates adversarial text with computational complexity sub-linear to the text length. We empirically evaluate TextBugger on a set of real-world DLTU systems and services used for sentiment analysis and toxic content detection, demonstrating its effectiveness, evasiveness, and efficiency. For instance, TextBugger achieves 100% success rate on the IMDB dataset based on Amazon AWS Comprehend within 4.61 seconds and preserves 97% semantic similarity. We further discuss possible defense mechanisms to mitigate such attack and the adversary's potential countermeasures, which leads to promising directions for further research.

View More Papers

NIC: Detecting Adversarial Samples with Neural Network Invariant Checking

Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Read More

ICSREF: A Framework for Automated Reverse Engineering of Industrial...

Anastasis Keliris (NYU), Michail Maniatakos (NYU Abu Dhabi)

Read More

Privacy Attacks to the 4G and 5G Cellular Paging...

Syed Rafiul Hussain (Purdue University), Mitziu Echeverria (University of Iowa), Omar Chowdhury (University of Iowa), Ninghui Li (Purdue University), Elisa Bertino (Purdue University)

Read More

Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis...

Sina Faezi (University of California, Irvine), Sujit Rokka Chhetri (University of California, Irvine), Arnav Vaibhav Malawade (University of California, Irvine), John Charles Chaput (University of California, Irvine), William Grover (University of California, Riverside), Philip Brisk (University of California, Riverside), Mohammad Abdullah Al Faruque (University of California, Irvine)

Read More