Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Mobile application developers rely heavily on open-source software (OSS)
to offload common functionalities such as the implementation of
protocols and media format playback. Over the past years, several
vulnerabilities have been found in popular open-source libraries like
OpenSSL and FFmpeg. Mobile applications that include such libraries
inherit these flaws, which make them vulnerable. Fortunately, the
open-source community is responsive and patches are made available
within days. However, mobile application developers are often left
unaware of these flaws. The App Security Improvement Program (ASIP) is
a commendable effort by Google to notify application developers of these
flaws, but recent work has shown that many developers do not act on this
information.

Our work addresses vulnerable mobile applications through automatic
binary patching from source patches provided by the OSS maintainers and
without involving the developers. We propose novel techniques to
overcome difficult challenges like patching feasibility analysis,
source-code-to-binary-code matching, and in-memory patching. Our
technique uses a novel variability-aware approach, which we implement as
OSSPatcher. We evaluated OSSPatcher with 39 OSS and a collection of
1,000 Android applications using their vulnerable versions. OSSPatcher
generated 675 function-level patches that fixed the affected mobile
applications without breaking their binary code. Further, we evaluated
10 vulnerabilities in popular apps such as Chrome with public exploits,
which OSSPatcher was able to mitigate and thwart their exploitation.

View More Papers

Latex Gloves: Protecting Browser Extensions from Probing and Revelation...

Alexander Sjösten (Chalmers University of Technology), Steven Van Acker (Chalmers University of Technology), Pablo Picazo-Sanchez (Chalmers University of Technology), Andrei Sabelfeld (Chalmers University of Technology)

Read More

Balancing Image Privacy and Usability with Thumbnail-Preserving Encryption

Kimia Tajik (Oregon State University), Akshith Gunasekaran (Oregon State University), Rhea Dutta (Cornell University), Brandon Ellis (Oregon State University), Rakesh B. Bobba (Oregon State University), Mike Rosulek (Oregon State University), Charles V. Wright (Portland State University), Wu-Chi Feng (Portland State University)

Read More

Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis...

Sina Faezi (University of California, Irvine), Sujit Rokka Chhetri (University of California, Irvine), Arnav Vaibhav Malawade (University of California, Irvine), John Charles Chaput (University of California, Irvine), William Grover (University of California, Riverside), Philip Brisk (University of California, Riverside), Mohammad Abdullah Al Faruque (University of California, Irvine)

Read More

BadBluetooth: Breaking Android Security Mechanisms via Malicious Bluetooth Peripherals

Fenghao Xu (The Chinese University of Hong Kong), Wenrui Diao (Jinan University), Zhou Li (University of California, Irvine), Jiongyi Chen (The Chinese University of Hong Kong), Kehuan Zhang (The Chinese University of Hong Kong)

Read More