Bingsheng Zhang (Lancaster University), Roman Oliynykov (IOHK Ltd.), Hamed Balogun (Lancaster University)

A treasury system is a community-controlled and decentralized collaborative decision-making mechanism for sustainable funding of blockchain development and maintenance. During each treasury period, project proposals are submitted, discussed, and voted for; top-ranked projects are funded from the treasury. The Dash governance system is a real-world example of such kind of systems. In this work, we, for the first time, provide a rigorous study of the treasury system. We modelled, designed, and implemented a provably secure treasury system that is compatible with most existing blockchain infrastructures, such as Bitcoin, Ethereum, etc. More specifically, the proposed treasury system supports liquid democracy/delegative voting for better collaborative intelligence. Namely, the stake holders can either vote directly on the proposed projects or delegate their votes to experts. Its core component is a distributed universally composable secure end-to-end verifiable voting protocol. The integrity of the treasury voting decisions is guaranteed even when all the voting committee members are corrupted. To further improve efficiency, we proposed the world’s first honest verifier zero-knowledge proof for unit vector encryption with logarithmic size communication. This partial result may be of independent interest to other cryptographic protocols. A pilot system is implemented in Scala over the Scorex 2.0 framework, and its benchmark results indicate that the proposed system can support tens of thousands of treasury participants with high efficiency.

View More Papers

Unveiling your keystrokes: A Cache-based Side-channel Attack on Graphics...

Daimeng Wang (University of California Riverside), Ajaya Neupane (University of California Riverside), Zhiyun Qian (University of California Riverside), Nael Abu-Ghazaleh (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Edward J. M. Colbert (Virginia Tech), Paul Yu (U.S. Army Research Lab (ARL))

Read More

Adversarial Attacks Against Automatic Speech Recognition Systems via Psychoacoustic...

Lea Schönherr (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Steffen Zeiler (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Dorothea Kolossa (Ruhr University Bochum)

Read More

Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints

Shiqi Shen (National University of Singapore), Shweta Shinde (National University of Singapore), Soundarya Ramesh (National University of Singapore), Abhik Roychoudhury (National University of Singapore), Prateek Saxena (National University of Singapore)

Read More

On the Challenges of Geographical Avoidance for Tor

Katharina Kohls (Ruhr-University Bochum), Kai Jansen (Ruhr-University Bochum), David Rupprecht (Ruhr-University Bochum), Thorsten Holz (Ruhr-University Bochum), Christina Pöpper (New York University Abu Dhabi)

Read More