Suphannee Sivakorn (Columbia University), Kangkook Jee (NEC Labs America), Yixin Sun (Princeton University), Lauri Korts-Pärn (Cyber Defense Institute), Zhichun Li (NEC Labs America), Cristian Lumezanu (NEC Labs America), Zhenyu Wu (NEC Labs America), Lu-An Tang (NEC Labs America), Ding Li (NEC Labs America)

Modern malware and cyber attacks depend heavily on DNS services to make their campaigns reliable and difficult to track. Monitoring network DNS activities and blocking suspicious domains have been proven an effective technique in countering such attacks. However, recent successful campaigns reveal that at- tackers adapt by using seemingly benign domains and public web storage services to hide malicious activity. Also, the recent support for encrypted DNS queries provides attacker easier means to hide malicious traffic from network-based DNS monitoring.

We propose PDNS, an end-point DNS monitoring system based on DNS sensor deployed at each host in a network, along with a centralized backend analysis server. To detect such attacks, PDNS expands the monitored DNS activity context and examines process context which triggered that activity. Specifically, each deployed PDNS sensor matches domain name and the IP address related to the DNS query with process ID, binary signature, loaded DLLs, and code signing information of the program that initiated it. We evaluate PDNS on a DNS activity dataset collected from 126 enterprise hosts and with data from multiple malware sources. Using ML Classifiers including DNN, our results outperform most previous works with high detection accuracy: a true positive rate at 98.55% and a low false positive rate at 0.03%.

View More Papers

Balancing Image Privacy and Usability with Thumbnail-Preserving Encryption

Kimia Tajik (Oregon State University), Akshith Gunasekaran (Oregon State University), Rhea Dutta (Cornell University), Brandon Ellis (Oregon State University), Rakesh B. Bobba (Oregon State University), Mike Rosulek (Oregon State University), Charles V. Wright (Portland State University), Wu-Chi Feng (Portland State University)

Read More

Analyzing Semantic Correctness with Symbolic Execution: A Case Study...

Sze Yiu Chau (Purdue University), Moosa Yahyazadeh (The University of Iowa), Omar Chowdhury (The University of Iowa), Aniket Kate (Purdue University), Ninghui Li (Purdue University)

Read More

A Systematic Framework to Generate Invariants for Anomaly Detection...

Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Read More

ExSpectre: Hiding Malware in Speculative Execution

Jack Wampler (University of Colorado Boulder), Ian Martiny (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More