Jonathan Crussell (Sandia National Laboratories)

Malware analysis relies on evolving tools that undergo continuous improvement and refinement. One such tool is Ghidra, released as open-source in 2019, which has seen 39 public releases and 13,000 commits as of October 2024. In this paper, we examine the impact of these updates on code similarity analysis for the same set of input files. Additionally, we measure how the underlying version of Ghidra affects simple metrics such as analysis time, error counts, and the number of functions identified. Our case studies reveal that Ghidra’s effectiveness varies depending on the specific file analyzed, highlighting the importance of context in evaluating tool performance.
We do not yet have an answer to the question posed in the title of this paper. In general, Ghidra has certainly improved in the years since it was released. Developers have fixed countless bugs, added substantial new features, and supported several new program formats. However, we observe that better is highly nuanced. We encourage the community to approach version upgrades with caution, as the latest release may not always provide superior results for every use case. By fostering a nuanced understanding of Ghidra’s advancements, we aim to contribute to more informed decision-making regarding tool adoption and usage in malware analysis and other binary analysis domains.

View More Papers

Uncovering the iceberg from the tip: Generating API Specifications...

Miaoqian Lin (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Yi Yang (Institute of Information Engineering, Chinese Academy of…

Read More

Distributed Function Secret Sharing and Applications

Pengzhi Xing (University of Electronic Science and Technology of China), Hongwei Li (University of Electronic Science and Technology of China), Meng Hao (Singapore Management University), Hanxiao Chen (University of Electronic Science and Technology of China), Jia Hu (University of Electronic Science and Technology of China), Dongxiao Liu (University of Electronic Science and Technology of China)

Read More

Time-varying Bottleneck Links in LEO Satellite Networks: Identification, Exploits,...

Yangtao Deng (Tsinghua University), Qian Wu (Tsinghua University), Zeqi Lai (Tsinghua University), Chenwei Gu (Tsinghua University), Hewu Li (Tsinghua University), Yuanjie Li (Tsinghua University), Jun Liu (Tsinghua University)

Read More

Onion Franking: Abuse Reports for Mix-Based Private Messaging

Matthew Gregoire (University of North Carolina at Chapel Hill), Margaret Pierce (University of North Carolina at Chapel Hill), Saba Eskandarian (University of North Carolina at Chapel Hill)

Read More