Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee, Knoxville)

In this the digital age, parents and children may turn to online security advice to determine how to proceed. In this paper, we examine the advice available to parents and children regarding content filtering and circumvention as found on YouTube and TikTok. In an analysis of 839 videos returned from queries on these topics, we found that half (n=399) provide relevant advice to the target demographic. Our results show that of these videos, roughly three-quarters are accurate, with the remaining one-fourth containing incorrect advice. We find that videos targeting children are both more likely to be incorrect and actionable than videos targeting parents, leaving children at increased risk of taking harmful action. Moreover, we find that while advice videos targeting parents will occasionally discuss the ethics of content filtering and device monitoring (including recommendations to respect children’s autonomy) no such discussion of the ethics or risks of circumventing content filtering is given to children, leaving them unaware of any risks that may be involved with doing so. Our findings suggest that video-based social media has the potential to be an effective medium for propagating security advice and that the public would benefit from security researchers and practitioners engaging more with these platforms, both for the creation of content and of tools designed to help with more effective filtering.

View More Papers

All your (data)base are belong to us: Characterizing Database...

Kevin van Liebergen (IMDEA Software Institute), Gibran Gomez (IMDEA Software Institute), Srdjan Matic (IMDEA Software Institute), Juan Caballero (IMDEA Software Institute)

Read More

A Transcontinental Analysis of Account Remediation Protocols of Popular...

Philipp Markert (Ruhr University Bochum), Andrick Adhikari (University of Denver), Sanchari Das (University of Denver)

Read More

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More

Blackbox Fuzzing of Distributed Systems with Multi-Dimensional Inputs and...

Yonghao Zou (Beihang University and Peking University), Jia-Ju Bai (Beihang University), Zu-Ming Jiang (ETH Zurich), Ming Zhao (Arizona State University), Diyu Zhou (Peking University)

Read More