Lea Duesterwald (Carnegie Mellon University), Ian Yang (Carnegie Mellon University), Norman Sadeh (Carnegie Mellon University)

Human actions or lack thereof contribute to a large majority of cybersecurity incidents. Traditionally, when looking for advice on cybersecurity questions, people have turned to search engines or social sites like Reddit. The rapid adoption of chatbot technologies is offering a potentially more direct way of getting similar advice. Initial research suggests, however, that while chatbot answers to common cybersecurity questions tend to be fairly accurate, they may not be very effective as they often fall short on other desired qualities such as understandability, actionability, or motivational power. Research in this area thus far has been limited to the evaluation by researchers themselves on a small number of synthetic questions. This article reports on what we believe to be the first in situ evaluation of a cybersecurity Question Answering (QA) assistant. We also evaluate a prompt engineered to help the cybersecurity QA assistant generate more effective answers. The study involved a 10-day deployment of a cybersecurity QA assistant in the form of a Chrome extension. Collectively, participants (N=51) evaluated answers generated by the assistant to over 1,000 cybersecurity questions they submitted as part of their regular day-to-day activities. The results suggest that a majority of participants found the assistant useful and often took actions based on the answers they received. In particular, the study indicates that prompting successfully improved the effectiveness of answers and, in particular, the likelihood that users follow their recommendations (fraction of participants who actually followed the advice was 0.514 with prompting vs. 0.402 without prompting, p=4.61E-04), an impact on people’s actual behavior. We provide a detailed analysis of data collected in this study, discuss their implications, and outline next steps in the development and deployment of effective cybersecurity QA assistants that offer the promise of changing actual user behavior and of reducing human-related security incidents.

View More Papers

Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall...

Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

Read More

Measuring the Prevalence of Password Manager Issues Using In-Situ...

Adryana Hutchinson (The George Washington University), Jinwei Tang (Clark University), Adam Aviv (The George Washington University), Peter Story (Clark University)

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More

GhostShot: Manipulating the Image of CCD Cameras with Electromagnetic...

Yanze Ren (Zhejiang University), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More