Jacob Hopkins (Texas A&M University - Corpus Christi), Carlos Rubio-Medrano (Texas A&M University - Corpus Christi), Cori Faklaris (University of North Carolina at Charlotte)

Data is a critical resource for technologies such as Large Language Models (LLMs) that are driving significant economic gains. Due to its importance, many different organizations are collecting and analyzing as much data as possible to secure their growth and relevance, leading to non-trivial privacy risks. Among the areas with potential for increased privacy risks are voluntary data-sharing events, when individuals willingly exchange their personal data for some service or item. This often places them in positions where they have inadequate control over what data should be exchanged and how it should be used. To address this power imbalance, we aim to obtain, analyze, and dissect the many different behaviors and needs of both parties involved in such negotiations, namely, the data subjects, i.e., the individuals whose data is being exchanged, and the data requesters, i.e., those who want to acquire the data. As an initial step, we are developing a multi-stage user study to better understand the factors that govern the behavior of both data subjects and requesters while interacting in data exchange negotiations. In addition, we aim to identify the design elements that both parties require so that future privacy-enhancing technologies (PETs) prioritizing privacy negotiation algorithms can be further developed and deployed in practice.

View More Papers

Privacy-Preserving Data Deduplication for Enhancing Federated Learning of Language...

Aydin Abadi (Newcastle University), Vishnu Asutosh Dasu (Pennsylvania State University), Sumanta Sarkar (University of Warwick)

Read More

Revealing the Black Box of Device Search Engine: Scanning...

Mengying Wu (Fudan University), Geng Hong (Fudan University), Jinsong Chen (Fudan University), Qi Liu (Fudan University), Shujun Tang (QI-ANXIN Technology Research Institute; Tsinghua University), Youhao Li (QI-ANXIN Technology Research Institute), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Min Yang (Fudan University)

Read More

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More

Revisiting EM-based Estimation for Locally Differentially Private Protocols

Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

Read More