Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Companies publish privacy policies to improve transparency regarding the handling of personal information. A discrepancy between the description of the privacy policy and the user’s understanding can lead to a risk of a decrease in trust. Therefore, in creating a privacy policy, the user’s understanding of the privacy policy should be evaluated. However, the periodic evaluation of privacy policies through user studies takes time and incurs financial costs. In this study, we investigated the understandability of privacy policies by large language models (LLMs) and the gaps between their understanding and that of users, as a first step towards replacing user studies with evaluation using LLMs. Obfuscated privacy policies were prepared along with questions to measure the comprehension of LLMs and users. In comparing the comprehension levels of LLMs and users, the average correct answer rates were 85.2% and 63.0%, respectively. The questions that LLMs answered incorrectly were also answered incorrectly by users, indicating that LLMs can detect descriptions that users tend to misunderstand. By contrast, LLMs understood the technical terms used in privacy policies, whereas users did not. The identified gaps in comprehension between LLMs and users, provide insights into the potential of automating privacy policy evaluations using LLMs.

View More Papers

Trust or Bust: A Survey of Threats in Decentralized...

Hetvi Shastri (University of Massachusetts Amherst), Akanksha Atrey (Nokia Bell Labs), Andre Beck (Nokia Bell Labs), Nirupama Ravi (Nokia Bell Labs)

Read More

Automatic Library Fuzzing through API Relation Evolvement

Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Read More

EyeSeeIdentity: Exploring Natural Gaze Behaviour for Implicit User Identification...

L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Read More

DLBox: New Model Training Framework for Protecting Training Data

Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Read More