Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Companies publish privacy policies to improve transparency regarding the handling of personal information. A discrepancy between the description of the privacy policy and the user’s understanding can lead to a risk of a decrease in trust. Therefore, in creating a privacy policy, the user’s understanding of the privacy policy should be evaluated. However, the periodic evaluation of privacy policies through user studies takes time and incurs financial costs. In this study, we investigated the understandability of privacy policies by large language models (LLMs) and the gaps between their understanding and that of users, as a first step towards replacing user studies with evaluation using LLMs. Obfuscated privacy policies were prepared along with questions to measure the comprehension of LLMs and users. In comparing the comprehension levels of LLMs and users, the average correct answer rates were 85.2% and 63.0%, respectively. The questions that LLMs answered incorrectly were also answered incorrectly by users, indicating that LLMs can detect descriptions that users tend to misunderstand. By contrast, LLMs understood the technical terms used in privacy policies, whereas users did not. The identified gaps in comprehension between LLMs and users, provide insights into the potential of automating privacy policy evaluations using LLMs.

View More Papers

“I didn't click”: What users say when reporting phishing

Nikolas Pilavakis, Adam Jenkins, Nadin Kokciyan, Kami Vaniea (University of Edinburgh)

Read More

VeriBin: Adaptive Verification of Patches at the Binary Level

Hongwei Wu (Purdue University), Jianliang Wu (Simon Fraser University), Ruoyu Wu (Purdue University), Ayushi Sharma (Purdue University), Aravind Machiry (Purdue University), Antonio Bianchi (Purdue University)

Read More

Tweezers: A Framework for Security Event Detection via Event...

Jian Cui (Indiana University), Hanna Kim (KAIST), Eugene Jang (S2W Inc.), Dayeon Yim (S2W Inc.), Kicheol Kim (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST), Xiaojing Liao (Indiana University)

Read More

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More