Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Augmented reality (AR) headsets are now commercially available, including major platforms like Microsoft’s Hololens 2, Meta’s Quest Pro, and Apple’s Vision Pro. Compared to currently widely deployed smartphone or web platforms, emerging AR headsets introduce new sensors that capture substantial and potentially privacy-invasive data about the users, including eye-tracking and hand-tracking sensors. As millions of users begin to explore AR for the very first time with the release of these headsets, it is crucial to understand the current technical landscape of these new sensing technologies and how end-users perceive and understand their associated privacy and utility implications. In this work, we investigate the current eye-tracking and hand-tracking permission models for three major platforms (HoloLens 2, Quest Pro, and Vision Pro): what is the granularity of eye-tracking and hand-tracking data made available to applications on these platforms, and what information is provided to users asked to grant these permissions (if at all)? We conducted a survey with 280 participants with no prior AR experience on Prolific to investigate (1) people’s comfort with the idea of granting eye- and hand-tracking permissions on these platforms, (2) their perceived and actual comprehension of the privacy and utility implications of granting these permissions, and (3) the self-reported factors that impact their willingness to try eye-tracking and hand-tracking enabled AR technologies in the future. Based on (mis)alignments we identify between comfort, perceived and actual comprehension, and decision factors, we discuss how future AR platforms can better communicate existing privacy protections, improve privacy-preserving designs, or better communicate risks.

View More Papers

LLM-xApp: A Large Language Model Empowered Radio Resource Management...

Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

Read More

EvoCrawl: Exploring Web Application Code and State using Evolutionary...

Xiangyu Guo (University of Toronto), Akshay Kawlay (University of Toronto), Eric Liu (University of Toronto), David Lie (University of Toronto)

Read More

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More