Tomer Schwartz (Data and Security Laboratory Fujitsu Research of Europe Ltd), Ofir Manor (Data and Security Laboratory Fujitsu Research of Europe Ltd), Andikan Otung (Data and Security Laboratory Fujitsu Research of Europe Ltd)

Cyber attacks and fraud pose significant risks to online platforms, with malicious actors who often employ VPN servers to conceal their identities and bypass geolocation-based security measures. Current passive VPN detection methods identify VPN connections with more than 95% accuracy, but depend on prior knowledge, such as known VPN to IP mappings and predefined communication patterns. This makes them ineffective against sophisticated attackers who leverage compromised machines as VPN servers. On the other hand, current active detection methods are effective in detecting proxy usage but are mostly ineffective in VPN detection.

This paper introduces SNITCH (Server-side Non-intrusive Identification of Tunneled CHaracteristics), a novel approach designed to enhance web security by identifying VPN use without prior data collection on known VPN servers or utilizing intrusive client-side software. SNITCH combines IP geolocation, ground-truth landmarks, and communication delay measurements to detect VPN activity in real time and seamlessly integrates into the authentication process, preserving user experience while enhancing security. We measured 130 thousand connections from over 24 thousand globally distributed VPN servers and client nodes to validate the feasibility of our solution in the real world. Our experiments revealed that in scenarios where the State of the Art fails to detect, SNITCH achieves a detection accuracy of up to 93%, depending on the geographical region.

View More Papers

Siniel: Distributed Privacy-Preserving zkSNARK

Yunbo Yang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Yuejia Cheng (Shanghai DeCareer Consulting Co., Ltd), Kailun Wang (Beijing Jiaotong University), Xiaoguo Li (College of Computer Science, Chongqing University), Jianfei Sun (School of Computing and Information Systems, Singapore Management University), Jiachen Shen (Shanghai Key Laboratory of Trustworthy Computing, East China Normal…

Read More

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

The Fault in Our Stars: An Analysis of GitHub...

Simon Koch, David Klein, and Martin Johns (TU Braunschweig)

Read More

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More