Chi-en Amy Tai (University of Waterloo), Urs Hengartner (University of Waterloo), Alexander Wong (University of Waterloo)

Passwords are a ubiquitous form of authentication that is still present for many online services and platforms. Researchers have measured password creation policies for a multitude of websites and studied password creation behaviour for users who speak various languages. Evidence shows that limiting all users to alphanumeric characters and select special characters resulted in weaker passwords for certain demographics. However, password creation policies still concentrate on only alphanumeric characters and focus on increasing the length of passwords rather than the diversity of potential characters in the password. With the recent recommendation towards passphrases, further concerns arise pertaining to the potential consequences of not being inclusive in password creation. Previous work studying multilingual passphrase policies that combined English and African languages showed that multilingual passphrases are more user-friendly and also more difficult to guess than a passphrase based on a single language. However, their work only studied passphrases based on standard alphanumeric characters. In this paper, we measure the password strength of using a multilingual passphrase that contains characters outside of the standard alphanumeric characters and assess the availability of such multilingual passwords for websites with free account creation in the Tranco top 50 list and the Semrush top 20 websites in China list. We find that password strength meters like zxcvbn and MultiPSM surprisingly struggle with correctly assessing the strength of non-English-only passphrases with MultiPSM encountering an encoding issue with non-alphanumeric characters. In addition, we find that half of all tested valid websites accept multilingual passphrases but three websites struggled in general due to imposing a maximum password character limitation.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 40 [1] => 118 ) ) ) [post__not_in] => Array ( [0] => 20924 ) )

A Method to Facilitate Membership Inference Attacks in Deep...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

BARBIE: Robust Backdoor Detection Based on Latent Separability

Hanlei Zhang (Zhejiang University), Yijie Bai (Zhejiang University), Yanjiao Chen (Zhejiang University), Zhongming Ma (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

dAngr: Lifting Software Debugging to a Symbolic Level

Dairo de Ruck, Jef Jacobs, Jorn Lapon, Vincent Naessens (DistriNet, KU Leuven, 3001 Leuven, Belgium)

Read More

Crosstalk-induced Side Channel Threats in Multi-Tenant NISQ Computers

Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)