Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

In this paper, we conduct an empirical study on remote DoS attacks targeting NAT networks (ReDAN, short for Remote DoS Attacks targeting NAT). We show that Internet attackers operating outside local NAT networks possess the capability to remotely identify a NAT device and subsequently terminate TCP connections initiated from the identified NAT device to external servers. Our attack involves two steps. First, we identify NAT devices on the Internet by exploiting inadequacies in the Path MTU Discovery (PMTUD) mechanism within NAT specifications. This deficiency creates a fundamental side channel that allows Internet attackers to distinguish if a public IPv4 address serves a NAT device or a separate IP host, aiding in the identification of target NAT devices. Second, we launch a remote DoS attack to terminate TCP connections on the identified NAT devices. While recent NAT implementations may include protective measures, such as packet legitimacy validation to prevent malicious manipulations on NAT mappings, we discover that these safeguards are not widely adopted in real world. Consequently, attackers can send crafted packets to deceive NAT devices into erroneously removing innocent TCP connection mappings, thereby disrupting the NATed clients to access remote TCP servers. Our experimental results reveal widespread security vulnerabilities in existing NAT devices. After testing 8 types of router firmware and 30 commercial NAT devices from 14 vendors, we identify vulnerabilities in 6 firmware types and 29 NAT devices that allow off-path removal of TCP connection mappings. Moreover, our measurements reveal a stark reality: 166 out of 180 (over 92%) tested real-world NAT networks, comprising 90 4G LTE/5G networks, 60 public Wi-Fi networks, and 30 cloud VPS networks, are susceptible to exploitation. We responsibly disclosed the vulnerabilities to affected vendors and received a significant number of acknowledgments. Finally, we propose our countermeasures against the identified DoS attack.

View More Papers

Work-in-Progress: Detecting Browser-in-the-Browser Attacks from Their Behaviors and DOM...

Ryusei Ishikawa, Soramichi Akiyama, and Tetsutaro Uehara (Ritsumeikan University)

Read More

On-demand RFID: Improving Privacy, Security, and User Trust in...

Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Read More

Victim-Centred Abuse Investigations and Defenses for Social Media Platforms

Zaid Hakami (Florida International University and Jazan University), Ashfaq Ali Shafin (Florida International University), Peter J. Clarke (Florida International University), Niki Pissinou (Florida International University), and Bogdan Carbunar (Florida International University)

Read More

The Road to Trust: Building Enclaves within Confidential VMs

Wenhao Wang (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Linke Song (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Benshan Mei (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shuang Liu (Ant Group), Shijun Zhao (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering,…

Read More