Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Code injection was a favored technique for attackers to exploit buffer overflow vulnerabilities decades ago. Subsequently, the widespread adoption of lightweight solutions like write-xor-execute (W⊕X) effectively mitigated most of these attacks by disallowing writable-and-executable memory. However, we observe multiple concerning cases where software developers accidentally disabled W⊕X and reintroduced executable stacks to popular applications. Although each violation has been properly fixed, a lingering question remains: what underlying factors contribute to these recurrent mistakes among developers, even in contemporary software development practices?

In this paper, we conduct two investigations to gain a comprehensive understanding of the challenges associated with properly enforcing W⊕X in Linux systems. First, we delve into program-hardening tools to assess whether experienced security developers consistently catch the necessary steps to avoid executable stacks. Second, we analyze the enforcement of W⊕X on Linux by inspecting the source code of the compilation toolchain, the kernel, and the loader. Our investigation reveals that properly enforcing W⊕X on Linux requires close collaboration among multiple components. These tools form a complex chain of trust and dependency to safeguard the program stack. However, developers, including security researchers, may overlook the subtle yet essential .note.GNU-stack section when writing assembly code for various purposes, and inadvertently introduce executable stacks. For example, 11 program-hardening tools implemented as inlined reference monitors (IRM) introduce executable stacks to all “hardened” applications. Based on these findings, we discuss potential exploitation scenarios by attackers and provide suggestions to mitigate this issue.

View More Papers

Secure IP Address Allocation at Cloud Scale

Eric Pauley (University of Wisconsin–Madison), Kyle Domico (University of Wisconsin–Madison), Blaine Hoak (University of Wisconsin–Madison), Ryan Sheatsley (University of Wisconsin–Madison), Quinn Burke (University of Wisconsin–Madison), Yohan Beugin (University of Wisconsin–Madison), Engin Kirda (Northeastern University), Patrick McDaniel (University of Wisconsin–Madison)

Read More

YuraScanner: Leveraging LLMs for Task-driven Web App Scanning

Aleksei Stafeev (CISPA Helmholtz Center for Information Security), Tim Recktenwald (CISPA Helmholtz Center for Information Security), Gianluca De Stefano (CISPA Helmholtz Center for Information Security), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More