Jiangyi Deng (Zhejiang University), Xinfeng Li (Zhejiang University), Yanjiao Chen (Zhejiang University), Yijie Bai (Zhejiang University), Haiqin Weng (Ant Group), Yan Liu (Ant Group), Tao Wei (Ant Group), Wenyuan Xu (Zhejiang University)

Malicious shell commands are linchpins to many cyber-attacks, but may not be easy to understand by security analysts due to complicated and often disguised code structures. Advances in large language models (LLMs) have unlocked the possibility of generating understandable explanations for shell commands. However, existing general-purpose LLMs suffer from a lack of expert knowledge and a tendency to hallucinate in the task of shell command explanation. In this paper, we present Raconteur, a knowledgeable, expressive and portable shell command explainer powered by LLM. Raconteur is infused with professional knowledge to provide comprehensive explanations on shell commands, including not only what the command does (i.e., behavior) but also why the command does it (i.e., purpose). To shed light on the high-level intent of the command, we also translate the natural-language-based explanation into standard technique & tactic defined by MITRE ATT&CK, the worldwide knowledge base of cybersecurity. To enable Raconteur to explain unseen private commands, we further develop a documentation retriever to obtain relevant information from complementary documentations to assist the explanation process. We have created a large-scale dataset for training and conducted extensive experiments to evaluate the capability of Raconteur in shell command explanation. The experiments verify that Raconteur is able to provide high-quality explanations and in-depth insight of the intent of the command.

View More Papers

Towards Understanding Unsafe Video Generation

Yan Pang (University of Virginia), Aiping Xiong (Penn State University), Yang Zhang (CISPA Helmholtz Center for Information Security), Tianhao Wang (University of Virginia)

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

The Midas Touch: Triggering the Capability of LLMs for...

Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More