René Helmke (Fraunhofer FKIE), Elmar Padilla (Fraunhofer FKIE, Germany), Nils Aschenbruck (University of Osnabrück)

Firmware corpora for vulnerability research should be textit{scientifically sound}. Yet, several practical challenges complicate the creation of sound corpora: Sample acquisition, e.g., is hard and one must overcome the barrier of proprietary or encrypted data. As image contents are unknown prior analysis, it is hard to select textit{high-quality} samples that can satisfy scientific demands.
Ideally, we help each other out by sharing data. But here, sharing is problematic due to copyright laws. Instead, papers must carefully document each step of corpus creation: If a step is unclear, replicability is jeopardized. This has cascading effects on result verifiability, representativeness, and, thus, soundness.

Despite all challenges, how can we maintain the soundness of firmware corpora? This paper thoroughly analyzes the problem space and investigates its impact on research: We distill practical binary analysis challenges that significantly influence corpus creation. We use these insights to derive guidelines that help researchers to nurture corpus replicability and representativeness. We apply them to 44 top tier papers and systematically analyze scientific corpus creation practices. Our comprehensive analysis confirms that there is currently no common ground in related work. It shows the added value of our guidelines, as they discover methodical issues in corpus creation and unveil miniscule step stones in documentation. These blur visions on representativeness, hinder replicability, and, thus, negatively impact the soundness of otherwise excellent work.

Finally, we show the feasibility of our guidelines and build a new corpus for large-scale analyses on Linux firmware: LFwC. We share rich meta data for good (and proven) replicability. We verify unpacking, deduplicate, identify contents, provide ground truth, and demonstrate LFwC's utility for research.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 20167 ) )

The Guardians of Name Street: Studying the Defensive Registration...

Boladji Vinny Adjibi (Georgia Tech), Athanasios Avgetidis (Georgia Tech), Manos Antonakakis (Georgia Tech), Michael Bailey (Georgia Tech), Fabian Monrose (Georgia Tech)

Read More

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

ReThink: Reveal the Threat of Electromagnetic Interference on Power...

Fengchen Yang (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Zihao Dan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Kaikai Pan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Chen Yan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Xiaoyu Ji (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Wenyuan Xu (Zhejiang University; ZJU…

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)