Rui Zeng (Zhejiang University), Xi Chen (Zhejiang University), Yuwen Pu (Zhejiang University), Xuhong Zhang (Zhejiang University), Tianyu Du (Zhejiang University), Shouling Ji (Zhejiang University)

Backdoors can be injected into NLP models to induce misbehavior when the input text contains a specific feature, known as a trigger, which the attacker secretly selects. Unlike fixed tokens, words, phrases, or sentences used in the textit{static} text trigger, textit{dynamic} backdoor attacks on NLP models design triggers associated with abstract and latent text features (e.g., style), making them considerably stealthier than traditional static backdoor attacks. However, existing research on NLP backdoor detection primarily focuses on defending against static backdoor attacks, while research on detecting dynamic backdoors in NLP models remains largely unexplored.

This paper presents CLIBE, the first framework to detect dynamic backdoors in Transformer-based NLP models. At a high level, CLIBE injects a textit{"few-shot perturbation"} into the suspect Transformer model by crafting an optimized weight perturbation in the attention layers to make the perturbed model classify a limited number of reference samples as a target label. Subsequently, CLIBE leverages the textit{generalization} capability of this "few-shot perturbation" to determine whether the original suspect model contains a dynamic backdoor. Extensive evaluation on three advanced NLP dynamic backdoor attacks, two widely-used Transformer frameworks, and four real-world classification tasks strongly validates the effectiveness and generality of CLIBE. We also demonstrate the robustness of CLIBE against various adaptive attacks. Furthermore, we employ CLIBE to scrutinize 49 popular Transformer models on Hugging Face and discover one model exhibiting a high probability of containing a dynamic backdoor. We have contacted Hugging Face and provided detailed evidence of the backdoor behavior of this model. Moreover, we show that CLIBE can be easily extended to detect backdoor text generation models (e.g., GPT-Neo-1.3B) that are modified to exhibit toxic behavior. To the best of our knowledge, CLIBE is the first framework capable of detecting backdoors in text generation models without requiring access to trigger input test samples. The code is available at https://github.com/Raytsang123/CLIBE.

View More Papers

L-HAWK: A Controllable Physical Adversarial Patch Against a Long-Distance...

Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

Read More

Kronos: A Secure and Generic Sharding Blockchain Consensus with...

Yizhong Liu (Beihang University), Andi Liu (Beihang University), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhuocheng Pan (Beihang University), Yinuo Li (Xi’an Jiaotong University), Jianwei Liu (Beihang University), Song Bian (Beihang University), Mauro Conti (University of Padua)

Read More

Misdirection of Trust: Demystifying the Abuse of Dedicated URL...

Zhibo Zhang (Fudan University), Lei Zhang (Fudan University), Zhangyue Zhang (Fudan University), Geng Hong (Fudan University), Yuan Zhang (Fudan University), Min Yang (Fudan University)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More