Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

The endless stream of vulnerabilities urgently calls for principled mitigation to confine the effect of exploitation. However, the monolithic architecture of commodity OS kernels, like the Linux kernel, allows an attacker to compromise the entire system by exploiting a vulnerability in any kernel component. Kernel compartmentalization is a promising approach that follows the least-privilege principle. However, existing mechanisms struggle with the trade-off on security, scalability, and performance, given the challenges stemming from mutual untrustworthiness among numerous and complex components.

In this paper, we present BULKHEAD, a secure, scalable, and efficient kernel compartmentalization technique that offers bi-directional isolation for unlimited compartments. It leverages Intel's new hardware feature PKS to isolate data and code into mutually untrusted compartments and benefits from its fast compartment switching. With untrust in mind, BULKHEAD introduces a lightweight in-kernel monitor that enforces multiple important security invariants, including data integrity, execute-only memory, and compartment interface integrity. In addition, it provides a locality-aware two-level scheme that scales to unlimited compartments. We implement a prototype system on Linux v6.1 to compartmentalize loadable kernel modules (LKMs). Extensive evaluation confirms the effectiveness of our approach. As the system-wide impacts, BULKHEAD incurs an average performance overhead of 2.44% for real-world applications with 160 compartmentalized LKMs. While focusing on a specific compartment, ApacheBench tests on ipv6 show an overhead of less than 2%. Moreover, the performance is almost unaffected by the number of compartments, which makes it highly scalable.

View More Papers

SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in...

Phillip Rieger (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Kavita Kumari (Technical University of Darmstadt), Tigist Abera (Technical University of Darmstadt), Jonathan Knauer (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Mysticeti: Reaching the Latency Limits with Uncertified DAGs

Kushal Babel (Cornell Tech & IC3), Andrey Chursin (Mysten Labs), George Danezis (Mysten Labs & University College London (UCL)), Anastasios Kichidis (Mysten Labs), Lefteris Kokoris-Kogias (Mysten Labs & IST Austria), Arun Koshy (Mysten Labs), Alberto Sonnino (Mysten Labs & University College London (UCL)), Mingwei Tian (Mysten Labs)

Read More

LLMPirate: LLMs for Black-box Hardware IP Piracy

Vasudev Gohil (Texas A&M University), Matthew DeLorenzo (Texas A&M University), Veera Vishwa Achuta Sai Venkat Nallam (Texas A&M University), Joey See (Texas A&M University), Jeyavijayan Rajendran (Texas A&M University)

Read More

NDSS Symposium 2025 Welcome and Opening Remarks

General Chairs: David Balenson, USC Information Sciences Institute and Heng Yin, University of California, Riverside Program Chairs: Christina Pöpper, New York University Abu Dhabi and Hamed Okhravi, MIT Lincoln Laboratory Artifact Evaluation Chairs: Daniele Cono D’Elia, Sapienza University and Mathy Vanhoef, KU Leuven

Read More