Fabian Rauscher (Graz University of Technology), Carina Fiedler (Graz University of Technology), Andreas Kogler (Graz University of Technology), Daniel Gruss (Graz University of Technology)

CPU caches are among the most widely studied side-channel targets, with Prime+Probe and Flush+Reload being the most prominent techniques. These generic cache attack techniques can leak cryptographic keys, user input, and are a building block of many microarchitectural attacks.

In this paper, we present the first systematic evaluation using 9 characteristics of the 4 most relevant cache attacks, Flush+Reload, Flush+Flush, Evict+Reload, and Prime+Probe, as well as three new attacks that we introduce: Demote+Reload, Demote+Demote, and DemoteContention. We evaluate hit-miss margins, temporal precision, spatial precision, topological scope, attack time, blind spot length, channel capacity, noise resilience, and detectability on recent Intel microarchitectures. Demote+Reload and Demote+Demote perform similar to previous attacks and slightly better in some cases, e.g., Demote+Reload has a 60.7 % smaller blind spot than Flush+Reload. With 15.48 Mbit/s, Demote+Reload has a 64.3 % higher channel capacity than Flush+Reload. We also compare all attacks in an AES T-table attack and compare Demote+Reload and Flush+Reload in an inter-keystroke timing attack. Beyond the scope of the prior attack techniques, we demonstrate a KASLR break with Demote+Demote and the amplification of power side-channel leakage with Demote+Reload. Finally, Sapphire Rapids and Emerald Rapids CPUs use a non-inclusive L3 cache, effectively limiting eviction-based cross-core attacks, e.g., Prime+Probe and Evict+Reload, to rare cases where the victim’s activity reaches the L3 cache. Hence, we show that in a cross-core attack, DemoteContention can be used as a reliable alternative to Prime+Probe and Evict+Reload that does not require reverse-engineering of addressing functions and cache replacement policy.

View More Papers

Truman: Constructing Device Behavior Models from OS Drivers to...

Zheyu Ma (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; EPFL; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Qiang Liu (EPFL), Zheming Li (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Tingting Yin (Zhongguancun…

Read More

Poster: Understanding User Acceptance of Privacy Labels: Barriers and...

Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

Read More

Diffence: Fencing Membership Privacy With Diffusion Models

Yuefeng Peng (University of Massachusetts Amherst), Ali Naseh (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

Security Signals: Making Web Security Posture Measurable at Scale

Michele Spagnuolo (Google), David Dworken (Google), Artur Janc (Google), Santiago Díaz (Google), Lukas Weichselbaum (Google)

Read More