Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

DNS-Based Blocklist (DNSBL) has been a longstanding, effective mitigation against malicious emails. While works have focused on evaluating the quality of such blocklists, much less is known about their adoption, end-to-end operation, and security problems. Powered by industrial datasets of nondelivery reports within 15 months, this paper first performs largescale measurements on the adoption of DNSBLs, reporting their prevalent usage by busy email servers. From an empirical study on the end-to-end operation of 29 DNSBL providers, we find they heavily rely on capture servers, concealed infrastructure to lure blind senders of spam, in generating blocklists. However, we find such capture servers can be exploited and report the HADES attack, where non-abusive email servers are deliberately injected into popular DNSBLs. Legitimate emails from victims will then be broadly rejected by their peers. Through field tests, we demonstrate the attack is effective at low costs: we successfully inject our experimental email servers into 14 DNSBLs, within a time frame ranging from as fast as three minutes to no longer than 24 hours. Practical assessment also uncovers significant attack potential targeting high-profile victims, e.g., large email service providers and popular websites. Upon responsible disclosure, five DNSBL providers have acknowledged the issue, and we also propose possible mitigation. Findings of this paper highlight the need for revisiting DNSBL security and guidelines in its operation.

View More Papers

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More

SCRUTINIZER: Towards Secure Forensics on Compromised TrustZone

Yiming Zhang (Southern University of Science and Technology and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences), Xuhua Ding (Singapore Management University), Zhenkai Liang (National University of Singapore), Shoumeng Yan (Ant Group), Tao…

Read More

LightAntenna: Characterizing the Limits of Fluorescent Lamp-Induced Electromagnetic Interference

Fengchen Yang (Zhejiang University), Wenze Cui (Zhejiang University), Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More