Vasudev Gohil (Texas A&M University), Matthew DeLorenzo (Texas A&M University), Veera Vishwa Achuta Sai Venkat Nallam (Texas A&M University), Joey See (Texas A&M University), Jeyavijayan Rajendran (Texas A&M University)

The rapid advancement of large language models (LLMs) has enabled the ability to effectively analyze and generate code nearly instantaneously, resulting in their widespread adoption in software development. Following this advancement, researchers and companies have also begun integrating LLMs across the hardware design and verification process. However, these highly potent LLMs can also induce new attack scenarios upon security vulnerabilities across the hardware development process. One such attack vector that has not been explored so far is intellectual property (IP) piracy. Given that this attack can manifest as rewriting hardware designs to evade piracy detection, it is essential to thoroughly evaluate LLM capabilities in performing this task and assess the mitigation abilities of current IP piracy detection tools.

Therefore, in this work, we propose *LLMPirate*, the first LLM-based technique able to generate pirated variations of circuit designs that successfully evade detection across multiple state-of-the-art piracy detection tools. We devise three solutions to overcome challenges related to integration of LLMs for hardware circuit designs, scalability to large circuits, and effectiveness, resulting in an end-to-end automated, efficient, and practical formulation. We perform an extensive experimental evaluation of *LLMPirate* using eight LLMs of varying sizes and capabilities and assess their performance in pirating various circuit designs against four state-of-the-art, widely-used piracy detection tools. Our experiments demonstrate that *LLMPirate* is able to consistently evade detection on 100% of tested circuits across every detection tool. Additionally, we showcase the ramifications of *LLMPirate* using case studies on IBEX and MOR1KX processors and a GPS module, that we successfully pirate. We envision that our work motivates and fosters the development of better IP piracy detection tools.

View More Papers

Revisiting EM-based Estimation for Locally Differentially Private Protocols

Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

Read More

Welcome to Jurassic Park: A Comprehensive Study of Security...

Abdullah AlHamdan (CISPA Helmholtz Center for Information Security), Cristian-Alexandru Staicu (CISPA Helmholtz Center for Information Security)

Read More

VeriBin: Adaptive Verification of Patches at the Binary Level

Hongwei Wu (Purdue University), Jianliang Wu (Simon Fraser University), Ruoyu Wu (Purdue University), Ayushi Sharma (Purdue University), Aravind Machiry (Purdue University), Antonio Bianchi (Purdue University)

Read More

ABElity: Attribute Based Encryption for Securing RIC Communication in...

K Sowjanya (Indian Institute of Technology Delhi), Rahul Saini (Eindhoven University of Technology), Dhiman Saha (Indian Institute of Technology Bhilai), Kishor Joshi (Eindhoven University of Technology), Madhurima Das (Indian Institute of Technology Delhi)

Read More