Mengying Wu (Fudan University), Geng Hong (Fudan University), Jinsong Chen (Fudan University), Qi Liu (Fudan University), Shujun Tang (QI-ANXIN Technology Research Institute; Tsinghua University), Youhao Li (QI-ANXIN Technology Research Institute), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Min Yang (Fudan University)

In the digital age, device search engines such as Censys and Shodan play crucial roles by scanning the internet to catalog online devices, aiding in the understanding and mitigation of network security risks. While previous research has used these tools to detect devices and assess vulnerabilities, there remains uncertainty regarding the assets they scan, the strategies they employ, and whether they adhere to ethical guidelines.

This study presents the first comprehensive examination of these engines’ operational and ethical dimensions. We developed a novel framework to trace the IP addresses utilized by these engines and collected 1,407 scanner IPs. By uncovering their IPs, we gain deep insights into the actions of device search engines for the first time and gain original findings. By employing 28 honeypots to monitor their scanning activities extensively in one year, we demonstrate that users can hardly evade scans by blocklisting scanner IPs or migrating service ports. Our findings reveal significant ethical concerns, including a lack of transparency, harmlessness, and anonymity. Notably, these engines often fail to provide transparency and do not allow users to opt out of scans. Further, the engines send malformed requests, attempt to access excessive details without authorization, and even publish personally identifiable information(PII) and screenshots on search results. These practices compromise user privacy and expose devices to further risks by potentially aiding malicious entities. This paper emphasizes the urgent need for stricter ethical standards and enhanced transparency in the operations of device search engines, offering crucial insights into safeguarding against invasive scanning practices and protecting digital infrastructures.

View More Papers

Oreo: Protecting ASLR Against Microarchitectural Attacks

Shixin Song (Massachusetts Institute of Technology), Joseph Zhang (Massachusetts Institute of Technology), Mengjia Yan (Massachusetts Institute of Technology)

Read More

Security Advice on Content Filtering and Circumvention for Parents...

Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee,…

Read More

Density Boosts Everything: A One-stop Strategy for Improving Performance,...

Jianwen Tian (Academy of Military Sciences), Wei Kong (Zhejiang Sci-Tech University), Debin Gao (Singapore Management University), Tong Wang (Academy of Military Sciences), Taotao Gu (Academy of Military Sciences), Kefan Qiu (Beijing Institute of Technology), Zhi Wang (Nankai University), Xiaohui Kuang (Academy of Military Sciences)

Read More

LeakLess: Selective Data Protection against Memory Leakage Attacks for...

Maryam Rostamipoor (Stony Brook University), Seyedhamed Ghavamnia (University of Connecticut), Michalis Polychronakis (Stony Brook University)

Read More