Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Software-Defined Networking (SDN) improves network flexibility by decoupling control functions (control plane) from forwarding devices (data plane). However, the logically centralized control plane is vulnerable to Control Policy Manipulation (CPM), which introduces incorrect policies by manipulating the controller's network view. Current methods for anomaly detection and configuration verification have limitations in detecting CPM attacks because they focus solely on the data plane. Certain covert CPM attacks are indistinguishable from normal behavior without analyzing the causality of the controller's decisions. In this paper, we propose ProvGuard, a provenance graph-based detection framework that identifies CPM attacks by monitoring controller activities. ProvGuard leverages static analysis to identify data-plane-related controller operations and guide controller instrumentation, constructing a provenance graph from captured control plane activities. ProvGuard reduces redundancies and extracts paths in the provenance graph as contexts to capture concise and long-term features. Suspicious behaviors are flagged by identifying paths that cause prediction errors beyond the normal range, based on a sequence-to-sequence prediction model. We implemented a prototype of ProvGuard on the Floodlight controller. Our approach successfully identified all four typical CPM attacks that previous methods could not fully address and provided valuable insights for investigating attack behaviors.

View More Papers

Too Subtle to Notice: Investigating Executable Stack Issues in...

Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Read More

Delay-allowed Differentially Private Data Stream Release

Xiaochen Li (University of Virginia), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University), Chen Gong (University of Virginia), Shuya Feng (University of Connecticut), Yuan Hong (University of Connecticut), Tianhao Wang (University of Virginia)

Read More

Density Boosts Everything: A One-stop Strategy for Improving Performance,...

Jianwen Tian (Academy of Military Sciences), Wei Kong (Zhejiang Sci-Tech University), Debin Gao (Singapore Management University), Tong Wang (Academy of Military Sciences), Taotao Gu (Academy of Military Sciences), Kefan Qiu (Beijing Institute of Technology), Zhi Wang (Nankai University), Xiaohui Kuang (Academy of Military Sciences)

Read More

I know what you MEME! Understanding and Detecting Harmful...

Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Read More