Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Software-Defined Networking (SDN) improves network flexibility by decoupling control functions (control plane) from forwarding devices (data plane). However, the logically centralized control plane is vulnerable to Control Policy Manipulation (CPM), which introduces incorrect policies by manipulating the controller's network view. Current methods for anomaly detection and configuration verification have limitations in detecting CPM attacks because they focus solely on the data plane. Certain covert CPM attacks are indistinguishable from normal behavior without analyzing the causality of the controller's decisions. In this paper, we propose ProvGuard, a provenance graph-based detection framework that identifies CPM attacks by monitoring controller activities. ProvGuard leverages static analysis to identify data-plane-related controller operations and guide controller instrumentation, constructing a provenance graph from captured control plane activities. ProvGuard reduces redundancies and extracts paths in the provenance graph as contexts to capture concise and long-term features. Suspicious behaviors are flagged by identifying paths that cause prediction errors beyond the normal range, based on a sequence-to-sequence prediction model. We implemented a prototype of ProvGuard on the Floodlight controller. Our approach successfully identified all four typical CPM attacks that previous methods could not fully address and provided valuable insights for investigating attack behaviors.

View More Papers

Query Privacy in Data Spaces

Shuwen Liu (School of Data Science, The Chinese University of Hong Kong, Shenzhen, China), George C. Polyzos (School of Data Science, The Chinese University of Hong Kong, Shenzhen, China and ExcID P.C., Athens, Greece)

Read More

TrajDeleter: Enabling Trajectory Forgetting in Offline Reinforcement Learning Agents

Chen Gong (University of Vriginia), Kecen Li (Chinese Academy of Sciences), Jin Yao (University of Virginia), Tianhao Wang (University of Virginia)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More

Detecting IMSI-Catchers by Characterizing Identity Exposing Messages in Cellular...

Tyler Tucker (University of Florida), Nathaniel Bennett (University of Florida), Martin Kotuliak (ETH Zurich), Simon Erni (ETH Zurich), Srdjan Capkun (ETH Zuerich), Kevin Butler (University of Florida), Patrick Traynor (University of Florida)

Read More