Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Software-Defined Networking (SDN) improves network flexibility by decoupling control functions (control plane) from forwarding devices (data plane). However, the logically centralized control plane is vulnerable to Control Policy Manipulation (CPM), which introduces incorrect policies by manipulating the controller's network view. Current methods for anomaly detection and configuration verification have limitations in detecting CPM attacks because they focus solely on the data plane. Certain covert CPM attacks are indistinguishable from normal behavior without analyzing the causality of the controller's decisions. In this paper, we propose ProvGuard, a provenance graph-based detection framework that identifies CPM attacks by monitoring controller activities. ProvGuard leverages static analysis to identify data-plane-related controller operations and guide controller instrumentation, constructing a provenance graph from captured control plane activities. ProvGuard reduces redundancies and extracts paths in the provenance graph as contexts to capture concise and long-term features. Suspicious behaviors are flagged by identifying paths that cause prediction errors beyond the normal range, based on a sequence-to-sequence prediction model. We implemented a prototype of ProvGuard on the Floodlight controller. Our approach successfully identified all four typical CPM attacks that previous methods could not fully address and provided valuable insights for investigating attack behaviors.

View More Papers

NodeMedic-FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities

Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented...

Ye Liu (Singapore Management University), Yue Xue (MetaTrust Labs), Daoyuan Wu (The Hong Kong University of Science and Technology), Yuqiang Sun (Nanyang Technological University), Yi Li (Nanyang Technological University), Miaolei Shi (MetaTrust Labs), Yang Liu (Nanyang Technological University)

Read More

Automatic Library Fuzzing through API Relation Evolvement

Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Read More

Formally Verifying the Newest Versions of the GNSS-centric TESLA...

Ioana Boureanu, Stephan Wesemeyer (Surrey Centre for Cyber Security, University of Surrey)

Read More