Zhongming Wang (Chongqing University), Tao Xiang (Chongqing University), Xiaoguo Li (Chongqing University), Biwen Chen (Chongqing University), Guomin Yang (Singapore Management University), Chuan Ma (Chongqing University), Robert H. Deng (Singapore Management University)

Encrypted messaging systems obstruct content moderation, although they provide end-to-end security. As a result, misinformation proliferates in these systems, thereby exacerbating online hate and harassment. The paradigm of ``Reporting-then-Tracing" shows great potential in mitigating the spread of misinformation. For instance, textit{message traceback} (CCS'19) traces all the dissemination paths of a message, while textit{source tracing} (CCS'21) traces its originator.
However, message traceback lacks privacy preservation for non-influential users (e.g., users who only receive the message once), while source tracing maintains privacy but only provides limited traceability.

In this paper, we initiate the study of textit{impact tracing}. Intuitively, impact tracing traces influential spreaders central to disseminating misinformation while providing privacy protection for non-influential users. We introduce noises to hide non-influential users and demonstrate that these noises do not hinder the identification of influential spreaders. Then, we formally prove our scheme's security and show it achieves differential privacy protection for non-influential users.
Additionally, we define three metrics to evaluate its traceability, correctness, and privacy using real-world datasets. The experimental results show that our scheme identifies the most influential spreaders with accuracy from 82% to 99% as the amount of noise varies. Meanwhile, our scheme requires only a 6-byte platform storage overhead for each message while maintaining a low messaging latency ($<$ 0.25ms).

View More Papers

MOBIDOJO: A Virtual Security Combat Platform for 5G Cellular...

Hyunwoo Lee (Ohio State University), Haohuang Wen (Ohio State University), Phillip Porras (SRI), Vinod Yegneswaran (SRI), Ashish Gehani (SRI), Prakhar Sharma (SRI), Zhiqiang Lin (Ohio State University)

Read More

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More

Automatic Library Fuzzing through API Relation Evolvement

Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Read More

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More