Guangke Chen (Pengcheng Laboratory), Yedi Zhang (National University of Singapore), Fu Song (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Science; Nanjing Institute of Software Technology), Ting Wang (Stony Brook University), Xiaoning Du (Monash University), Yang Liu (Nanyang Technological University)

Singing voice conversion (SVC) automates song covers by converting a source singing voice from a source singer into a new singing voice with the same lyrics and melody as the source, but sounds like being covered by the target singer of some given target singing voices. However, it raises serious concerns about copyright and civil right infringements. We propose SongBsAb, the first proactive approach to tackle SVC-based illegal song covers. SongBsAb adds perturbations to singing voices before releasing them, so that when they are used, the process of SVC will be interfered, leading to unexpected singing voices. Perturbations are carefully crafted to (1) provide a dual prevention, i.e., preventing the singing voice from being used as the source and target singing voice in SVC, by proposing a gender-transformation loss and a high/low hierarchy multi-target loss, respectively; and (2) be harmless, i.e., no side-effect on the enjoyment of protected songs, by refining a psychoacoustic model-based loss with the backing track as an additional masker, a unique accompanying element for singing voices compared to ordinary speech voices. We also adopt a frame-level interaction reduction-based loss and encoder ensemble to enhance the transferability of SongBsAb to unknown SVC models. We demonstrate the prevention effectiveness, harmlessness, and robustness of SongBsAb on five diverse and promising SVC models, using both English and Chinese datasets, and both objective and human study-based subjective metrics. Our work fosters an emerging research direction for mitigating illegal automated song covers.

View More Papers

Was This You? Investigating the Design Considerations for Suspicious...

Sena Sahin (Georgia Institute of Technology), Burak Sahin (Georgia Institute of Technology), Frank Li (Georgia Institute of Technology)

Read More

ReDAN: An Empirical Study on Remote DoS Attacks against...

Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

Read More

Distributed Function Secret Sharing and Applications

Pengzhi Xing (University of Electronic Science and Technology of China), Hongwei Li (University of Electronic Science and Technology of China), Meng Hao (Singapore Management University), Hanxiao Chen (University of Electronic Science and Technology of China), Jia Hu (University of Electronic Science and Technology of China), Dongxiao Liu (University of Electronic Science and Technology of China)

Read More