Hang Zhang (Indiana University Bloomington), Jangha Kim (The Affiliated Institute of ETRI, ROK), Chuhong Yuan (Georgia Institute of Technology), Zhiyun Qian (University of California, Riverside), Taesoo Kim (Georgia Institute of Technology)

Use-After-Free (UAF) is one of the most widely spread and severe memory safety issues, attracting lots of research efforts toward its automatic discovery. Existing UAF detection approaches include two major categories: dynamic and static. While dynamic methods like fuzzing can detect UAF issues with high precision, they are inherently limited in code coverage. Static approaches, on the other hand, can usually only discover simple sequential UAF cases, despite that many real-world UAF bugs involve intricate cross-entry control and data flows (e.g., concurrent UAFs). Limited static tools supporting cross-entry UAF detection also suffer from inaccuracy or narrowed scope (e.g., cannot handle complex codebases like the Linux kernel).

In this paper, we propose UAFX, a static analyzer capable of discovering cross-entry UAF vulnerabilities in the Linux kernel and potentially extensible to general C programs. UAFX is powered by a novel escape-fetch-based cross-entry alias analysis, enabling it to accurately analyze the alias relationships between the use and free sites even when they scatter in different entry functions. UAFX is also equipped with a systematic UAF validation framework based on partial-order constraints, allowing it to reliably reason about multiple UAF-related code aspects (e.g., locks, path conditions, threads) to filter out false alarms. Our evaluation shows that UAFX can discover new cross-entry UAF vulnerabilities in the kernel and one user-space program (80 true positive warnings), with reasonable reviewer-perceived precision (more than 40%) and performance.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 20021 ) )

Hitchhiking Vaccine: Enhancing Botnet Remediation With Remote Code Deployment...

Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian...

Kaiyuan Zhang (Purdue University), Siyuan Cheng (Purdue University), Guangyu Shen (Purdue University), Bruno Ribeiro (Purdue University), Shengwei An (Purdue University), Pin-Yu Chen (IBM Research AI), Xiangyu Zhang (Purdue University), Ninghui Li (Purdue University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)