Myungsuk Moon (Yonsei University), Minhee Kim (Yonsei University), Joonkyo Jung (Yonsei University), Dokyung Song (Yonsei University)

On-device deep learning, increasingly popular for enhancing user privacy, now poses a serious risk to the privacy of deep neural network (DNN) models. Researchers have proposed to leverage Arm TrustZone's trusted execution environment (TEE) to protect models from attacks originating in the rich execution environment (REE). Existing solutions, however, fall short: (i) those that fully contain DNN inference within a TEE either support inference on CPUs only, or require substantial modifications to closed-source proprietary software for incorporating accelerators; (ii) those that offload part of DNN inference to the REE either leave a portion of DNNs unprotected, or incur large run-time overheads due to frequent model (de)obfuscation and TEE-to-REE exits.

We present ASGARD, the first virtualization-based TEE solution designed to protect on-device DNNs on legacy Armv8-A SoCs. Unlike prior work that uses TrustZone-based TEEs for model protection, ASGARD's TEEs remain compatible with existing proprietary software, maintain the trusted computing base (TCB) minimal, and incur near-zero run-time overhead. To this end, ASGARD (i) securely extends the boundaries of an existing TEE to incorporate an SoC-integrated accelerator via secure I/O passthrough, (ii) tightly controls the size of the TCB via our aggressive yet security-preserving platform- and application-level TCB debloating techniques, and (iii) mitigates the number of costly TEE-to-REE exits via our exit-coalescing DNN execution planning. We implemented ASGARD on RK3588S, an Armv8.2-A-based commodity Android platform equipped with a Rockchip NPU, without modifying Rockchip- nor Arm-proprietary software. Our evaluation demonstrates that ASGARD effectively protects on-device DNNs in legacy SoCs with a minimal TCB size and negligible inference latency overhead.

View More Papers

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More

Rediscovering Method Confusion in Proposed Security Fixes for Bluetooth

Maximilian von Tschirschnitz (Technical University of Munich), Ludwig Peuckert (Technical University of Munich), Moritz Buhl (Technical University of Munich), Jens Grossklags (Technical University of Munich)

Read More

Secret Spilling Drive: Leaking User Behavior through SSD Contention

Jonas Juffinger (Graz University of Technology), Fabian Rauscher (Graz University of Technology), Giuseppe La Manna (Amazon), Daniel Gruss (Graz University of Technology)

Read More

ReDAN: An Empirical Study on Remote DoS Attacks against...

Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

Read More