Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

In structured peer-to-peer networks, like Chord, users find data by
asking a number of intermediate nodes in the network. Each node
provides the identity of the closet known node to the address of the
data, until eventually the node responsible for the data is reached.
This structure means that the intermediate nodes learn the address of
the sought after data. Revealing this information to other nodes makes
Chord unsuitable for applications that require query privacy so in
this paper we present a scheme Iris to provide query privacy while
maintaining compatibility with the existing Chord protocol. This means
that anyone using it will be able to execute a privacy preserving
query but it does not require other nodes in the network to use it (or
even know about it).

In order to better capture the privacy achieved by the iterative
nature of the search we propose a new privacy notion, inspired by
$k$-anonymity. This new notion called $(alpha,delta)$-privacy, allows us to formulate
privacy guarantees against adversaries that collude and take advantage
of the total amount of information leaked in all iterations of the
search.

We present a security analysis of the proposed algorithm based on the
privacy notion we introduce. We also develop a prototype of the
algorithm in Matlab and evaluate its performance. Our analysis proves
Iris to be $(alpha,delta)$-private while introducing a modest performance
overhead. Importantly the overhead is tunable and proportional to the
required level of privacy, so no privacy means no overhead.

View More Papers

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More

RadSee: See Your Handwriting Through Walls Using FMCW Radar

Shichen Zhang (Michigan State University), Qijun Wang (Michigan State University), Maolin Gan (Michigan State University), Zhichao Cao (Michigan State University), Huacheng Zeng (Michigan State University)

Read More

On-demand RFID: Improving Privacy, Security, and User Trust in...

Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More