Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College, Boston University, USA), Jiayun Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Shaowen Xu (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Zhenyu Song (Institute of Information Engineering, Chinese Academy of Science)

Containers have become widely adopted in cloud platforms due to their efficient deployment and high resource utilization. However, their weak isolation has always posed a significant security concern. In this paper, we propose RContainer, a novel secure container architecture that protects containers from untrusted operating systems and enforces strong isolation among containers by extending ARM Confidential Computing Architecture (CCA) hardware primitives. RContainer introduces a small, trusted mini-OS that runs alongside the deprivileged OS, responsible for monitoring the control flow between the operating system and containers. Additionally, RContainer uses shim-style isolation, creating an isolated physical address space called con-shim for each container at the kernel layer through the Granule Protection Check mechanism. We have implemented RContainer on ARMv9-A Fixed Virtual Platform and ARMv8 hardware SoC for security analysis and performance evaluation. Experimental results demonstrate that RContainer can significantly enhance container security with a modest performance overhead and a minimal Trusted Computing Base (TCB).

View More Papers

Cascading Spy Sheets: Exploiting the Complexity of Modern CSS...

Leon Trampert (CISPA Helmholtz Center for Information Security), Daniel Weber (CISPA Helmholtz Center for Information Security), Lukas Gerlach (CISPA Helmholtz Center for Information Security), Christian Rossow (CISPA Helmholtz Center for Information Security), Michael Schwarz (CISPA Helmholtz Center for Information Security)

Read More

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

Defending Against Membership Inference Attacks on Iteratively Pruned Deep...

Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Read More

TME-Box: Scalable In-Process Isolation through Intel TME-MK Memory Encryption

Martin Unterguggenberger (Graz University of Technology), Lukas Lamster (Graz University of Technology), David Schrammel (Graz University of Technology), Martin Schwarzl (Cloudflare, Inc.), Stefan Mangard (Graz University of Technology)

Read More