Caihua Li (Yale University), Seung-seob Lee (Yale University), Lin Zhong (Yale University)

Confidential Computing (CC) has received increasing attention in recent years as a mechanism to protect user data from untrusted operating systems (OSes). Existing CC solutions hide confidential memory from the OS and/or encrypt it to achieve confidentiality. In doing so, they render OS memory optimization unusable or complicate the trusted computing base (TCB) required for optimization. This paper presents our results toward overcoming these limitations, synthesized in a CC design named Blindfold. Like many other CC solutions, Blindfold relies on a small trusted software component running at a higher privilege level than the kernel, called Guardian. It features three techniques that can enhance existing CC solutions. First, instead of nesting page tables, Blindfold’s Guardian mediates how the OS accesses memory and handles exceptions by switching page and interrupt tables. Second, Blindfold employs a lightweight capability system to regulate the OS’s semantic access to user memory, unifying case-by-case approaches in previous work. Finally, Blindfold provides carefully designed secure ABI for confidential memory management without encryption. We report an implementation of Blindfold that works on ARMv8-A/Linux. Using Blindfold's prototype, we are able to evaluate the cost of enabling confidential memory management by the untrusted Linux kernel. We show Blindfold has a smaller runtime TCB than related systems and enjoys competitive performance. More importantly, we show that the Linux kernel, including all of its memory optimizations except memory compression, can function properly for confidential memory. This requires only about 400 lines of kernel modifications.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 19997 ) )

Ctrl+Alt+Deceive: Quantifying User Exposure to Online Scams

Platon Kotzias (Norton Research Group, BforeAI), Michalis Pachilakis (Norton Research Group, Computer Science Department University of Crete), Javier Aldana Iuit (Norton Research Group), Juan Caballero (IMDEA Software Institute), Iskander Sanchez-Rola (Norton Research Group), Leyla Bilge (Norton Research Group)

Read More

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More

CASPR: Context-Aware Security Policy Recommendation

Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More