Shixin Song (Massachusetts Institute of Technology), Joseph Zhang (Massachusetts Institute of Technology), Mengjia Yan (Massachusetts Institute of Technology)

Address Space Layout Randomization (ASLR) is one of the most prominently deployed mitigations against memory corruption attacks. ASLR randomly shuffles program virtual addresses to prevent attackers from knowing the location of program contents in memory. Microarchitectural side channels have been shown to defeat ASLR through various hardware mechanisms. We systematically analyze existing microarchitectural attacks and identify multiple leakage paths. Given the vast attack surface exposed by ASLR, it is challenging to effectively prevent leaking the ASLR secret against microarchitectural attacks.

Motivated by this, we present Oreo, a software-hardware co-design mitigation that strengthens ASLR against these attacks. Oreo uses a new memory mapping interface to remove secret randomized bits in virtual addresses before translating them to their corresponding physical addresses. This extra step hides randomized virtual addresses from microarchitecture structures, preventing side channels from leaking ASLR secrets. Oreo is transparent to user programs and incurs low overhead. We prototyped and evaluated our design on Linux using the hardware simulator gem5.

View More Papers

HADES Attack: Understanding and Evaluating Manipulation Risks of Email...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

Read More

Black-box Membership Inference Attacks against Fine-tuned Diffusion Models

Yan Pang (University of Virginia), Tianhao Wang (University of Virginia)

Read More

SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Read More

NodeMedic-FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities

Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More