Wenhao Li (Shandong University), Jiahao Wang (Shandong University), Guoming Zhang (Shandong University), Yanni Yang (Shandong University), Riccardo Spolaor (Shandong University), Xiuzhen Cheng (Shandong University), Pengfei Hu (Shandong University)

Iris recognition is one of the most secure biometric methods due to the uniqueness and stability of iris patterns, as well as their resistance to forgery. Consequently, it is frequently used in high-security authentication scenarios. However, systems using Near-Infrared (NIR) sensors may expose the iris information of users, leading to significant privacy risks. Our research found that the electromagnetic (EM) emissions generated during data transmission of NIR sensors are closely related to iris data. Based on this observation, we propose EMIRIS, a method for reconstructing the iris information using EM side channels. By deconstructing the digital signal transmission format of the NIR sensors and the mapping mechanism of the iris data matrix, we can reconstruct iris information from EM signals and convert it into iris images. To improve the quality of the reconstructed iris, we model the denoising and restoration of iris texture details as a linear inverse problem and tailor a diffusion model to solve it. Extensive experimental evaluations show that EMIRIS can effectively reconstruct iris information from commercial iris recognition devices, achieving an average SSIM of 0.511 and an average FID of 7.25. Even more concerning, these reconstructed irises can effectively spoof the classical iris recognition model with an average success rate of 53.47% on more than 3,000 iris samples from 50 different users.

View More Papers

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More

Exploring User Perceptions of Security Auditing in the Web3...

Molly Zhuangtong Huang (University of Macau), Rui Jiang (University of Macau), Tanusree Sharma (Pennsylvania State University), Kanye Ye Wang (University of Macau)

Read More

Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo...

Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

Read More