Derin Cayir (Florida International University), Reham Mohamed Aburas (American University of Sharjah), Riccardo Lazzeretti (Sapienza University of Rome), Marco Angelini (Link Campus University of Rome), Abbas Acar (Florida International University), Mauro Conti (University of Padua), Z. Berkay Celik (Purdue University), Selcuk Uluagac (Florida International University)

As Virtual Reality (VR) technologies advance, their application in privacy-sensitive contexts, such as meetings, lectures, simulations, and training, expands. These environments often involve conversations that contain privacy-sensitive information about users and the individuals with whom they interact. The presence of advanced sensors in modern VR devices raises concerns about possible side-channel attacks that exploit these sensor capabilities. In this paper, we introduce IMMERSPY, a novel acoustic side-channel attack that exploits motion sensors in VR devices to extract sensitive speech content from on-device speakers. We analyze two powerful attacker scenarios: informed attacker, where the attacker possesses labeled data about the victim, and uninformed attacker, where no prior victim information is available. We design a Mel-spectrogram CNN-LSTM model to extract digit information (e.g., social security or credit card numbers) by learning the speech-induced vibrations captured by motion sensors. Our experiments show that IMMERSPY detects four consecutive digits with 74% accuracy and 16-digit sequences, such as credit card numbers, with 62% accuracy. Additionally, we leverage Generative AI text-to-speech models in our attack experiments to illustrate how the attackers can create training datasets even without the need to use the victim’s labeled data. Our findings highlight the critical need for security measures in VR domains to mitigate evolving privacy risks. To address this, we introduce a defense technique that emits inaudible tones through the Head-Mounted Display (HMD) speakers, showing its effectiveness in mitigating acoustic side-channel attacks.

View More Papers

Evaluating LLMs Towards Automated Assessment of Privacy Policy Understandability

Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Read More

Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon

Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

Read More

Vulnerability, Where Art Thou? An Investigation of Vulnerability Management...

Daniel Klischies (Ruhr University Bochum), Philipp Mackensen (Ruhr University Bochum), Veelasha Moonsamy (Ruhr University Bochum)

Read More

URVFL: Undetectable Data Reconstruction Attack on Vertical Federated Learning

Duanyi Yao (Hong Kong University of Science and Technology), Songze Li (Southeast University), Xueluan Gong (Wuhan University), Sizai Hou (Hong Kong University of Science and Technology), Gaoning Pan (Hangzhou Dianzi University)

Read More