Seyed Ali Ghazi Asgar, Narasimha Reddy (Texas A&M University)

The Internet of Things (IoT) is experiencing exponential growth, with projections estimating over 29 billion devices by 2027. These devices often have limited resources, necessitating the use of lightweight communication protocols. MQTT is a widely used protocol in the IoT domain, but defective security configurations can pose significant risks for the users. In this work, we classify the most commonly used open-source IoT applications that utilize MQTT as their primary communication protocol and evaluate the associated attack scenarios. Our analysis shows that home automation IoT applications have the highest number of exposed devices. In addition, our examination suggests that tracking applications are prone to higher risks as the normalized percentage of exposed devices for this category is 6.85% while only 2.91% of home automation devices are exposed. To tackle these issues, we developed a lightweight, opensource exposure detection system suitable for both computerbased clients and ESP32 microcontrollers. This system warns the users of compromised MQTT broker which enhances the overall security in IoT deployments without any significant overhead.

View More Papers

SKILLPoV: Towards Accessible and Effective Privacy Notice for Amazon...

Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Mohammed Aldeen (Clemson University), Luyi Xing (Indiana University Bloomington), Danfeng (Daphne) Yao (Virginia Tech), Long Cheng (Clemson University)

Read More

CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian...

Kaiyuan Zhang (Purdue University), Siyuan Cheng (Purdue University), Guangyu Shen (Purdue University), Bruno Ribeiro (Purdue University), Shengwei An (Purdue University), Pin-Yu Chen (IBM Research AI), Xiangyu Zhang (Purdue University), Ninghui Li (Purdue University)

Read More

TrajDeleter: Enabling Trajectory Forgetting in Offline Reinforcement Learning Agents

Chen Gong (University of Vriginia), Kecen Li (Chinese Academy of Sciences), Jin Yao (University of Virginia), Tianhao Wang (University of Virginia)

Read More

Towards Better CFG Layouts

Jack Royer (CentraleSupélec), Frédéric TRONEL (CentraleSupélec, Inria, CNRS, University of Rennes), Yaëlle Vinçont (Univ Rennes, Inria, CNRS, IRISA)

Read More