Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Recent work in ICML’22 established a connection between dataset condensation (DC) and differential privacy (DP), which is unfortunately problematic. To correctly connect DC and DP, we propose two differentially private dataset condensation (DPDC) algorithms—LDPDC and NDPDC. LDPDC is a linear DC algorithm that can be executed on a low-end Central Processing Unit (CPU), while NDPDC is a nonlinear DC algorithm that leverages neural networks to extract and match the latent representations between real and synthetic data. Through extensive evaluations, we demonstrate that LDPDC has comparable performance to recent DP generative methods despite its simplicity. NDPDC provides acceptable DP guarantees with a mild utility loss, compared to distribution matching (DM). Additionally, NDPDC allows a flexible trade-off between the synthetic data utility and DP budget.

View More Papers

ActiveDaemon: Unconscious DNN Dormancy and Waking Up via User-specific...

Ge Ren (Shanghai Jiao Tong University), Gaolei Li (Shanghai Jiao Tong University), Shenghong Li (Shanghai Jiao Tong University), Libo Chen (Shanghai Jiao Tong University), Kui Ren (Zhejiang University)

Read More

More Lightweight, yet Stronger: Revisiting OSCORE’s Replay Protection

Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More