Matt Jansen, Rakesh Bobba, Dave Nevin (Oregon State University)

Provenance-based Intrusion Detection Systems (PIDS) are threat detection methods which utilize system provenance graphs as a medium for performing detection, as opposed to conventional log analysis and correlation techniques. Prior works have explored the creation of system provenance graphs from audit data, graph summarization and indexing techniques, as well as methods for utilizing graphs to perform attack detection and investigation. However, insufficient focus has been placed on the practical usage of PIDS for detection, from the perspective of end-user security analysts and detection engineers within a Security Operations Center (SOC). Specifically, for rule-based PIDS which depend on an underlying signature database of system provenance graphs representing attack behavior, prior work has not explored the creation process of these graph-based signatures or rules. In this work, we perform a user study to compare the difficulty associated with creating graph-based detection, as opposed to conventional log-based detection rules. Participants in the user study create both log and graph-based detection rules for attack scenarios of varying difficulty, and provide feedback of their usage experience after the scenarios have concluded. Through qualitative analysis we identify and explain various trends in both rule length and rule creation time. We additionally run the produced detection rules against the attacks described in the scenarios using open source tooling to compare the accuracy of the rules produced by the study participants. We observed that both log and graph-based methods resulted in high detection accuracy, while the graph-based creation process resulted in higher interpretability and low false positives as compared to log-based methods.

View More Papers

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More

Detecting Voice Cloning Attacks via Timbre Watermarking

Chang Liu (University of Science and Technology of China), Jie Zhang (Nanyang Technological University), Tianwei Zhang (Nanyang Technological University), Xi Yang (University of Science and Technology of China), Weiming Zhang (University of Science and Technology of China), NengHai Yu (University of Science and Technology of China)

Read More

Securing Lidar Communication through Watermark-based Tampering Detection (Long)

Michele Marazzi, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More