Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Access control failures can cause data breaches, putting entire organizations at risk of financial loss and reputation damage. One of the main reasons for such failures is the mistakes made by system administrators when they manually generate low-level access control policies directly from highlevel requirement specifications. Therefore, to help administrators in that policy generation process, previous research proposed graphical policy authoring tools and automated policy generation frameworks. However, in reality, those tools and frameworks are neither usable nor reliable enough to help administrators generate access control policies accurately while avoiding access control failures. Therefore, as a solution, in this paper, we present “AccessFormer”, a novel policy generation framework that improves both the usability and reliability of access control policy generation. Through the proposed framework, on the one hand, we improve the reliability of policy generation by utilizing Language Models (LMs) to generate, verify, and refine access control policies by incorporating the system’s as well as administrator’s feedback. On the other hand, we also improve the usability of the policy generation by proposing a usable policy authoring interface designed to help administrators understand policy generation mistakes and accurately provide feedback.

View More Papers

ShapFuzz: Efficient Fuzzing via Shapley-Guided Byte Selection

Kunpeng Zhang (Shenzhen International Graduate School, Tsinghua University), Xiaogang Zhu (Swinburne University of Technology), Xi Xiao (Shenzhen International Graduate School, Tsinghua University), Minhui Xue (CSIRO's Data61), Chao Zhang (Tsinghua University), Sheng Wen (Swinburne University of Technology)

Read More

Cybercrime Investigators are Users Too! Understanding the Socio-Technical Challenges...

Mariam Nouh (University of Oxford); Jason R. C. Nurse (University of Kent); Helena Webb, Michael Goldsmith (University of Oxford)

Read More

WIP: Hidden Hub Eavesdropping Attack in Matter-enabled Smart Home...

Song Liao, Jingwen Yan, Long Cheng (Clemson University)

Read More

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More